
Omuses
a tool for the

Optimization of multistage systems

and

HQP

a solver for sparse nonlinear optimization

Version ���

R�udiger Franke

Dept� of Automation and Systems Engineering

Technical University of Ilmenau

Germany

September ��� ����

Ohne das Instrumentarium der Informatik ist die Kybernetik denkbehindert�
ohne systemtheoretische Konzeptionen ist die Informatik bei der Steuerung

zweckbehindert �sichtbehindert��

Karl Reinisch� ����

�Without the instruments of computer science� cybernetics is hindered in
thinking	 without system theoretical conceptions� computer science is aim

hindered �hindered in viewing� in the case of control�

Contents

� Omuses �

��� Introduction �

��� Problem formulation �

����� Problem without stages �

����� Multistage problem �

����� Treatment of di�erential equations � � � � � � � � � � � � � � � � � � �

����� Multiple sample periods per stage � � � � � � � � � � � � � � � � � � � 	

����� Large
scale nonlinear programming problem � � � � � � � � � � � � � �

��� The Omuses problem interface ��

����� Problem setup ��

����� System equations
 optimization criterion
 and constraints � � � � � � ��

����� Continuous
time equations ��

����� Simulation of starting values ��

��� The Omuses command interface ��

��� The Odc demo collection ��

����� Nonlinear test examples ��

����� Container crane ��

� HQP ��

��� Introduction ��

��� Outline of the algorithm ��

����� Problem formulation ��

����� The SQP solver �	

����� The QP solver ��

����� The matrix solver ��

��� The parameter and control interface ��

�

��� The DOCP problem interface ��

��� The CUTE problem interface ��

��� Using HQP through the Internet ��

��� Computational examples ��

����� Solved examples ��

����� Experiments with stretching problems � � � � � � � � � � � � � � � � ��

Applications ��

Bibliography ��

A Interface Elements ��

A�� Omuses interface elements ��

A�� CUTE interface elements ��

A�� HQP solver interface elements ��

A���� Solver con�guration ��

A���� Retrieving variable values and controlling execution � � � � � � � � � �	

A�� Tcl procedures ��

B Omuses examples ��

B�� Implementations of TP�	� and TP�	�omu � � � � � � � � � � � � � � � � � � ��

B�� Container crane ��

B���� Omola code for the model ��

B���� Automatically generated C code fragments � � � � � � � � � � � � � � ��

C Copyright ��

�

Chapter �

Omuses

��� Introduction

Omuses is a front
end to the large
scale nonlinear optimization solver HQP �see chapter
��� It supports the formulation and the solution of optimization problems for models
described by di�erential and recurrence equations�

Small optimization problems can be formulated using the Omuses problem interface with

out stages� The multistage formulation is advantageous to the e�cient application of the
SQP
type solver HQP to large
scale optimization problems
 if the problem structure al

lows it� Often the separation of optimization problems into multiple stages results in a
faster solution� This is caused by the better approximation of the Lagrangian Hessians of
the nonlinear problem parts in each stage by low rank updates� The idea of partitioned
variable metric updates was introduced by Griewank and Toint ���	�� for unconstrained
minimization and is regarded in the literature up to now
 e�g� �Fletcher
 ������

In our case
 the idea is applied to nonlinearly constrained problems using Powell�s modi

�ed BFGS update for separate diagonal blocks of the Lagrangian Hessian� The cost is that
the problem size is blown up� Additional variables and linear junction conditions between
successive stages are introduced� But the resulting block
banded sparsity structure allows
an e�cient treatment� For problems with many free variables
 e�g� to approximately de

scribe a continuous control trajectory for a dynamic system
 the better sparsity structure
might even further speed up the solution� The additional variables often represent system
states� In this way the speci�cation and treatment of constraints is simpli�ed
 provided
that an appropriate optimization solver is available �Arnold
 ��	��
�Arnold et al�
 ������
A sparse interior point algorithm for convex quadratic programming has been developed
and implemented in HQP for the e�cient treatment of the linear
quadratic subproblems
in the nonlinear SQP
iterations �Franke and Arnold
 ������ The algorithm is motivated
by Wright �������

Omuses supports the sampling of a continuous time horizon and the �exible assignment
of the samples to stages� It covers the calculation of exact derivatives and sensitivity
equations by using automatic di�erentiation �Griewank et al�
 ������ Standard numerical
integration procedures are applied to the solution of di�erential equations� All stages are
assigned to a large
 nonlinearly constrained optimization problem� Constraints that result
from the junction conditions between successive stages are inserted automatically�

�

The multistage interface of Omuses is strongly motivated by the separability structure
of discrete
time optimal control problems� However
 we think that this structure is of
quite general use� The particularity of Omuses
 compared to currently available general

purpose languages and tools for mathematical programming
 e�g� �Fourer et al�
 �����
 is
the support for di�erential equations� Advanced modeling languages and model compilers
for continuous
time systems can be used to simplify the problem speci�cation �Franke

�����
 �Franke and Arnold
 ������ In the context of control systems engineering
 the
solution method is referred to as multistage control parameterization or direct multiple
shooting� The application of Omuses is currently limited to ordinary di�erential equations
�ODEs�� Di�erential
algebraic equation systems �DAEs� are considered in the problem
interface� See e�g� �Pantelides et al�
 ����� and �Maly and Petzold
 ����� for the extension
of the approach to DAEs�

This chapter concentrates on the Omuses problem interface and the discussion of ex

amples� Test runs of the underlying optimization solver HQP �see chapter �� can also
be performed via e
mail problem submission �Franke
 �����
 using the low
level stan

dard input format SIF �Conn et al�
 ������ This can be useful for comparing HQP with
other solvers� Large
scale nonlinear test examples out of several areas of application are
available in the CUTE collection� Their free availability has been very helpful for the de

velopment of HQP� However
 HQP does currently neither exploit the general separability
structure expressed in SIF
 nor does the CUTE solver interface support this �Bongartz
et al�
 ������ For more information about available optimization software and testing see
e�g� H�D� Mittlemann�s guide http���plato�la�asu�edu�guide�html�

The experience we have made when treating several optimization problems
 practical
applications and standard test examples
 and the availability of �productivity� languages
and tools like C��
 Tcl
 and ADOL
C
 con�rmed us to develop Omuses�

��� Problem formulation

����� Problem without stages

An unstructured nonlinear programming problem in x � IRnx variables can be formulated
without use of stages as

f��x� � min
x
� �����

f� � IR
nx �� IR��

subject to the variable bounds

xl � x � xu� �����

and the general constraints

cl � c�x� � cu� �����

c � IRnx �� IRnc�

Omuses calculates the Jacobians of f� and c for the solution of the problem by HQP�

�

����� Multistage problem

The variables xk � IRnx�k and uk � IRnu�k are introduced for multistage problems with
K � � stages k � �� �� � � � � K � �� The variables xk represent the initial states of each
stage
 whereas the variables uk are additional control parameters� The optimization
variables of the unstructured problem ����������� serve in the multistage case as the �nal
states xK � The state variables are constrained with the system equations

xk�� � fk�xk�uk�� �����

fk � IRnx�k � IRnu�k �� IRnx�k���

The solution for the variables is underdetermined by ����� alone� One way to de�ne
a solution
 would be to specify the initial states x� and the controls uk� The system
equations could then be successively solved for the states xk� k � � and xK � However

the solution of the multistage problem is de�ned more generally by the mathematical
programming problem

fK
� �xK� �

X
k

fk
� �x

k�uk� � min
xk�uk�xK

� �����

fK
� � IRnx�K �� IR�� fk

� � IRnx�k � IRnu�k �� IR��

subject to the system equations �����
 the variable bounds

xkl � xk � xku� xKl � xK � xKu � �����

uk
l � uk � uk

u�

and the constraints

ckl � ck�xk�uk� � cku� cKl � cK�xK� � cKu � �����

ck � IRnx�k � IRnu�k �� IRnc�k � cK � IRnx�K �� IRnc�K �

Omuses calculates the Jacobians of �����
 �����
 and ����� in each stage and assigns all
stages to a large
scale nonlinear programming problem�

����� Treatment of di�erential equations

Often problems of the form ����������� arise from the discretization of di�erential equa

tions� The functions fk de�ne then the solutions of the di�erential equations over speci�ed
time periods� Their Jacobians are the sensitivity matrices of the solutions with respect
to the initial states xk and the control parameters uk�

The time horizon �t�� tf � is introduced for the treatment of di�erential equations by
Omuses� It is divided into K communication periods �tk� tk��� with the communication
time points t� � t� � t� � � � � � tK � tf � Each stage of the multistage problem covers
one communication period� The di�erential equations are de�ned for the continuous
time

�

state variables �xk � IRn�x�k � n�x�k � nx�k� In each stage
 the continuous
time �nal states
�xk�tk��� are calculated by numerical integration of

Fk�t� �xk�uk� ��x
k
� � �� t � �tk� tk���� ���	�

Fk � IR� � IRn�x�k � IRnu�k � IRn�x�k �� IRn�x�k �

starting with the initial conditions

�xk�tk� � Ik�tk�xk�uk�� �����

Ik � IR� � IRnx�k � IRnu�k �� IRn�x�k �

Currently only ODEs are treated� The initialization is de�ned by default as

IkODE�t
k�xk�uk� � xk� ������

In order to be able to treat higher index DAEs
 the initialization of consistent initial
conditions has to be extended� This can be done by the introduction of additional elements
in �xk
 so called algebraic states or dummy derivatives �Mattsson and S�oderlind
 ������
An other possibility is to use the initialization ������ also for DAEs
 but to introduce
additional constraints for the initial states into the optimization problem and to augment
the integration procedure
 see e�g� �Grupp
 ������ The choice of an appropriate extension
and its implementation into Omuses is matter of further investigation�

The system equations �����
 the criterion �����
 and the constraints ����� are now de�ned
as derived quantities of the continuous
time �nal states �xk�tk���
 besides xk and uk
 as

fk�xk�uk� � fk
h
xk�uk� �xk�tk���

i
�

fk
� �x

k�uk� � fk
�

h
xk�uk� �xk�tk���

i
�

ck�xk�uk� � ck
h
xk�uk� �xk�tk���

i
�

In general not all elements of xk are de�ned by di�erential equations� That is why the �rst
nd�k � n�x�k elements of �xk that are not de�ned in ���	� are treated as constants during the
integration process ��xki �t� � �xki �t

k�� � � i � nd�k� t � �tk� tk����� The integration is omitted
for problems without di�erential equations �nd�k � n�x�k��

����� Multiple sample periods per stage

Each stage k of the multistage problem ����������� may cover nk � � sample periods
k�� k�� � � � � knk�� within its communication period �tk� tk���
 tk � tk�� � tk�� � � � � �
tk�nk�� � tk�nk � tk��� The system equations ����� are solved successively over all sample
periods
 that is

fk�xk�uk� � fk�nk���xk�nk���uk��

xk�l�� � fk�l�xk�l�uk�� l � �� � � � � nk � �� ������

xk�� � xk�

	

�

t
t� tf

kk � � � � � � � � � KK

k � � � � � � K

Figure ���� Exemplary separation of the time horizon �t�� tf � into K � � stages with two
sample periods per stage�

Speci�ed di�erential equations are solved separately in each sample period as discussed
in subsection ������ The optimization criterion ����� and the constraints ����� are de�ned
as sums over all sample periods
 that is

fk
� �x

k�uk� �
nk��X
l��

fk�l
� �xk�l�uk�� ������

ck�xk�uk� �
nk��X
l��

ck�l�xk�l�uk�� ������

With one sample period per stage
 the extended de�nitions ������
 ������
 and ������
reduce to fk
 fk

�
 and ck of the basic multistage formulation ������������ On the other
hand
 small optimization problems can be formulated in one stage by using multiple
sample periods �see also subsection �������

With the help of this �exible mapping from the sample periods to the communication
periods
 the continuous time horizon can be separated according to model requirements
�e�g� according to sampled measurement data�
 whereas the number of stages can be
chosen and modi�ed afterwards according to requirements of the optimization �e�g� useful
optimization problem separation and communication periods��

Figure ��� shows an example with K � � and nk � �� k � �� �� �� The counter kk
is incremented globally over all stages
 so that it can be used as index into vectors of
sampled data�

����� Large�scale nonlinear programming problem

The multistage problem ����������� can be treated as a high
dimensional nonlinear pro

gramming problem� The important point for its e�cient solution is its nice separability
structure� There are only linear constraints between the state variables of successive
stages de�ned in ������ Consequently the Lagrangian Hessian of the problem has a block

diagonal sparsity structure with one block for each stage� The high
dimensional equation

�

system that results from the Karush
Kuhn
Tucker optimality conditions and that is solved
by HQP has a block
banded sparsity structure that is worth exploiting
 see �Franke and
Arnold
 ������ Omuses accesses the DOCP interface of HQP �see section �����

The multistage problem is transformed to a large
scale nonlinear programming problem
of the form

J�x�� min
x
� J � IRn �� IR�� ������

subject to�

h�x� � �� h � IRn �� IRme � ������

g�x� � �� g � IRn �� IRm� ������

J
 h
 and g are assumed to be two times continuously di�erentiable with respect to x�
At least they should be su�ciently smooth to allow the treatment of the speci�c problem
with an SQP algorithm�

It should be noted that neither the expanded states �xi� nx�k � i � n�x�k
 nor the interme

diate results at sample time points within communication periods appear in x�

��� The Omuses problem interface

Optimization problems are formulated for Omuses in the programming language C��
by deriving an implementation from the interface class Omu Program� Up to six methods
can be overloaded in order to exploit the full functionality� Two methods �setup�� and
update��� must be implemented�

The documentation given in this section is intended to be used together with the examples
in section ��� and the problem formulation in section ��� as a programmers reference�
Small example codes are also listed in appendix B���

Vector and matrix data are de�ned with array data types of the Meschach library for ma

trix computations in C �Steward and Leyk
 ����� and the ADOL
C package for automatic
di�erentiation �Griewank et al�
 ������ Their application to the Omuses problem formu

lation is straightforward due to the use of C�� operator overloading� Small wrapper
classes have been implemented for pointers to the Meschach data structures�

����� Problem setup

void setup stages�IVECP ks� VECP ts�

The stages of the optimization problem are de�ned by the integer vector ks and the double
vector ts� This can be done by calling the service routine

void stages�alloc�IVECP ks� VECP ts� int K� int sps�

double t� � ���� double tf � 	���

��

with K the number of stages and sps the number of sample periods per stage� The optional
arguments t� and tf de�ne the time horizon �t�� tf �� The communication and sample time
points are distributed equally over the time horizon by stages alloc��� Furthermore the
integers K and KK
 that are members of Omu Program
 are set�

More generally
 the vector ts � IRKK�� can be initialized with increasing sample time
points� The vector ks � IIK�� can be initialized with increasing indices into ts
 in order
to determine the communication time points with the optimization�

The default implementation of setup stages�� initializes an optimization problem of the
form ����������� without stages�

Odc examples� TP
�
omu
 HS��omu
 CranePar
 Crane

void setup�int k�

Omu Vector
x� Omu Vector
u� Omu Vector
c�

The optimization variables are de�ned in each stage k � �� � � � � K � � by the states
xk � IRnx�k
 the controls uk � IRnu�k
 and the constraints ck � IRnc�k � The method

void Omu�Vector��alloc�int n� int n�expand � �	�

is provided for the allocation of the variable vectors with dimension n� The optional
argument n expand
 which defaults to n
 can be speci�ed for state variables� It determines
the dimension n�x�k � nx�k �see subsection �������

Each Omu Vector contains the members min
 max
 and initial
 besides its actual ele

ments� These vector attributes are used to store minimal
 maximal and initial values�
They default to �Inf
 Inf
 and ���
 respectively
 for all their elements�

In the case k � K
 only the �nal states xK � IRnx�K and the constraints cK � IRnc�K can
be speci�ed�

Odc examples� all

����� System equations� optimization criterion� and constraints

void update�int kk�

const adoublev
x� const adoublev
u�

adoublev
f� adouble
f�� adoublev
c�

The function values fkk � IRmax�n�x�k�nx�k���
 fkk
� � IR�
 and ckk � IRnc�k for the sample

periods kk � �� � � � � KK � � in the according stages k � �� � � � � K � � are evaluated
repeatedly during the optimization process� Their calculation has to be de�ned in the
method update�� depending on the current values of xkk � IRn�x�k and uk � IRnu�k� In
the �rst sample period of stage k
 the argument xkk is de�ned as xkki � xki � � � i � nx�k
and xkki � initial�xki �� nx�k � i � n�x�k� The initial values of the expanded states are
speci�ed in setup��� The functions fkk
 fkk

�
 and ckk de�ne one term of ������
 ������
 and
������� Starting with the second sample period of stage k
 xkk contains the result fkk��

respectively�

��

In the case kk � KK
 only the criterion fKK
� � fK

� � IR� and the constraints cKK � cK �
IRnc�K can be speci�ed�

The solution �xkk�tkk��� of optional di�erential equations is passed as default value of fkk

to update��� If no di�erential equations are present
 then fkk defaults to xkk� The default
values of fkk

� and ckk are zeros�

Odc examples� all

����� Continuous�time equations

void continuous�int kk� double t�

const adoublev
x� const adoublev
u�

const adoublev
xp� adoublev
F�

The continuous
time equations are de�ned in each sample period kk � KK in the residual
form according to ���	�� Standard numerical integration procedures are applied to the so

lution of the di�erential equations and their extension by sensitivity equations� Currently
only solvers for non
sti� ODEs are implemented� It is assumed that �Fk

� �xk
are constant

regular diagonal matrices in each stage k� The matrices are determined internally by
Omuses during the problem setup�

Furthermore Omuses determines the �rst nd�k � n�x�k components of Fk that are not
de�ned in continuous��� They are treated as constants during the integration process�
The methods continuous�� and consistic�� are not called anymore if nd�k � n�x�k�

The default implementation of continuous�� is empty�

Odc examples� HS��omu
 CranePar
 Crane

void consistic�int kk� double t�

const Omu Vector
x� const Omu Vector
u�

VECP xt� MATP xtx � MNULL� MATP xtu � MNULL�

The method consistic�� can be implemented for the initialization of the continuous

time variables �xkk � IRn�x�k from xkk � IRn�x�k and uk � IRnu�k according to ������ In the
�rst sample period of stage k
 the argument xkk is de�ned as xkki � xki � � � i � nx�k and
xkki � initial�xki �� nx�k � i � n�x�k� The initial values of the expanded states are speci�ed in
setup��� Starting with the second sample period of stage k
 xkk contains the result fkk��

of update��
 respectively�

The matrices xtx
 that is ��xkk�tkk�
�xkk

 and xtu
 that is ��xkk�tkk�
�uk

are needed for the calculation
of sensitivities� They are currently user
speci�ed�

The default implementation copies x to xt
 sets xtx to the identity matrix
 and �lls xtu
with zeros� The method consistic�� may be changed in the future
 when integration
procedures for DAEs will have been implemented� We decided to already document it

because the expansion mechanism can also be useful for ODEs
 e�g� to implement �xed
initial values of state variables�

Odc examples� none

��

����� Simulation of starting values

void init simulation�int k�

Omu Vector
x� Omu Vector
u�

Often it is convenient to let the optimizer calculate starting values for optimization vari

ables that represent system states� This can be done in Omuses with the help of sub

sequent initial
value simulations for all stages k � �� � � � � K � �� Before the simulation
starts in stage k
 the initial states xk � IRn�x�k
 and the control parameters uk � IRnu�k

can be speci�ed in init simulation��� The states xk� k � � are set by default to the
simulation results of the preceding stage k � �
 respectively
 and to zeros if k � �� The
control parameters uk are set by default to zeros�

In the case k � K
 only the simulated �nal states xK � IRnx�k can be modi�ed�

The default implementation copies x�initial to x if k � �
 and u�initial to u for all
k � �� � � � � K � ��

Odc examples� Crane

��� The Omuses command interface

Omuses
 as well as HQP
 contain an interface to the Tool Command Language �Tcl�
�Ousterhout
 ������ This allows the �exible problem setup
 solver con�guration
 and
treatment of results� A small library of interface element types has been developed in order
to encapsulate the creation and deletion of Tcl commands
 to support the arrangement
of C�� classes in a framework
 and to propagate the information about implemented
classes to the command interface
 see also the discussion in �Franke
 ����b�� For a listing
of available interface elements see appendix A�

��� The Odc demo collection

In this section we discuss simple
 illustrative examples� We try to point out several e�ects
that are well known in the �eld of numerical optimization and that are important for the
e�cient application of Omuses�

C�� codes of the examples are available with the distribution� They can be compiled to
the executable odc �Omuses demo collection��

First the multistage front
end Omuses is introduced by treating two small test examples�
Each example is solved in two formulations� its original
 unstructured formulation and a
multistage formulation� The advantage of the multistage formulations for the solution of
the optimization problems by HQP is shown�

Afterwards an optimal control problem is discussed� It is motivated by a laboratory for
the undergraduate education �Arnold
 � ���� Here it is extended by a parameter and
initial states estimation� Furthermore we want to explain the application of Omuses in
connection with the modeling and simulation environment OmSim �Mattsson et al�
 ������

More practically oriented applications are stated in section �Applications on page ���

��

����� Nonlinear test examples

In this subsection the standard test examples TP
�
 from the collection �Schittkowski

��	�� and HS�� from �Hock and Schittkowski
 ��	�� are treated� The example �name�

has been implemented in the �les Prg �name���hC��

Nonlinear programming example TP�	�

The problem TP
�
 in the �� optimization variables xi� i � �� � � � � �� is

��X
i��

ai�xi � min
xi

�

subject to�

��X
i��

cixi � �� ������

xi � �� i � �� � � � � ���

xi � ����� i � �� � � � � ��

xi � ����� i � �� � � � � ���

Values for ai and ci
 i � �� � � � � �� are externally supplied�

In order to obtain an equivalent formulation overK � �� stages
 the state sk� k � �� � � � � K
is introduced and the control parameters uk� k � �� � � � � K � � are used for the free
optimization variables� The equivalent multistage formulation TP
�
omu is

��X
k��

ak�u
k � min

uk
�

subject to

sK � ��

sk�� � sk � cku
k� k � �� � � � � ��� ����	�

s� � ��

uk � �� k � �� � � � � ���

uk � ����� k � �� � � � � ��

uk � ����� k � �� � � � � ���

The Omuses implementation of TP
�
 and TP
�
omu is listed in appendix B���

��

Optimal control example HS��

The problem HS�� in the � optimization variables xi� i � �� � � � � � is

�r	
 � min
xi

�

subject to

q
 � �������

s
 � ����

� � xi � ���	� i � �� � � � � �� ������

where

ri � ai�ti � ti��� cos xi�� � ri���

qi � ����ti � ti���
	�ai sinxi�� � b� � �ti � ti���si�� � qi���

si � �ti � ti����ai sinxi�� � b� � si��� i � �� � � � � ��

r� � q� � s� � ��

Values for ai
 ti
 i � �� � � � � �
 and b are externally supplied�

The equivalent formulation HS��omu over K � � stages
 with the time t � �t�� tf �
 and
using the control parameters uk� k � �� � � � � K � � as optimization variables
 is

�r�tf �
	 � min

uk
�

subject to

q�tf� � �������

s�tf� � �����

�r�t� � a�t� cos u�t�� ������

�q�t� � s�t��

�s�t� � a�t� sinu�t�� b� t � �t�� tf ��

r�t�� � q�t�� � s�t�� � ��

� � uk � ���	� k � �� � � � � ��

where

a�t� � ak���

u�t� � uk� t � �tk� tk���� k � �� � � � � ��

A comparison of the formulations underlines the fact that it is normally more user friendly
to formulate continuous
time problems in continuous time� Moreover additional �exibility
is gained for the control parameterization�

��

Running the examples

To run an example
 execute the Tcl script run with the example name as argument
 e�g�

� run HS��

should produce the output

it obj ��grdL�� ��inf�� � qp res� ��s�� s�Qs stepsize

� �����	�e
�� ��
�
e
�� �����e
�� � � opt� �����
 ���		e
�� �

� ���	���	e
�� ����e
�� �

� � 	 opt� �������� ����	e
�
 �

� ���	����e
�� ���	�e
�� ����� � � opt� ����
	��
��� �

	 ���	���e
�� ����	e
��
�

 � � opt� �������	� ����� �

 ���	���e
�� ���
�e
�
 ������ � � opt� ������
�	 ����	 �

� ���	���e
�� ���
�e
�
 �����	�� � � opt�
�
��e��� ����� �

� ���	���e
�� 	���
 �������� � � opt� ��	
�e��� ������	� �

� ���	���e
�� 	�	�� 	����e��� � � opt� �����e��� ��������� �

� ���	���e
�� ����� ����	e��� � � opt�
����e���
����e���

�� qp�it

Result � optimal

Objective� ���	���e
��

Obj�evals� �

Variables�

���
�
�� �������� �����

� ��
����� ��
���	� ��
����	 ��	�����

This solution protocol can be interpreted as follows� The problem HS�� is solved in � iter

ations� During each iteration one local
 linear
quadratic approximation to the nonlinear
optimization problem is formed
 incorporating an initial
value simulation of the system
model and a sensitivity analysis� The formed subproblems are treated by the QP
solver�
In total �� subiterations
 i�e� solutions of a linear equation system of the dimension of
all optimization variables and constraints
 are performed� Additional 	 objective func

tion evaluations are done for the step size control
 each incorporating an initial
value
simulation of the system model and the calculation of the constraints�

Table ��� shows the collected results for all examples� One interesting point is the signif

icantly lower number of iterations needed to solve the multistage version of TP
�
� This

Name n me m sbw f Evals Iters QP�Iters Time

TP��� �� � �� �� ����	� �� �� ��	
��

TP���omu �	 �� �� � ����	� � 	 �	
��

HS		 � � �� �� �����
�e� � 	 ��
��

HS		omu �� �� �� 	 �����
�e� � � �

�� �
��

Table ���� Results for the nonlinear test examples� Each row shows the numbers of
optimization variables n
 equality constraints me
 inequality constraints �bounds� m
 the
semibandwidth of the factorized matrix
 the obtained optimal objective function value
f
 the numbers of objective function evaluations
 iterations and subiterations
 and the
consumed CPU
time �s� using a Sun UltraSPARC �!��� workstation�

��

l

m Trolley Drive

phi l

Claw and Loadm

u

d

s

Figure ���� Container crane�

is caused by the better approximation of the Lagrangian Hessian of the problem due to
partitioned BFGS update� In the unstructured formulation TP
�

 one matrix is updated
for all optimization variables� In the multistage formulation TP
�
omu
 one separate block
that contains only one intrinsic optimization variable is updated for each stage�

The increase of the computational time for HS��omu
 compared to HS��
 is mainly caused
by the numerical solution of the di�erential equations� The computational time can be
reduced signi�cantly by replacing the default integration routine RKsuite with the �xed
stepsize method RK� �value in parentheses�� This can be done for this example with

out drawbacks
 because the exact solutions with the applied piecewise constant control
parameterization are piecewise low order polynomials�

����� Container crane

Model description

Figure ��� shows the schema of a crane used to carry container loads� It can be modeled
by the following system of ordinary di�erential equations�

�s � v

�v �
�
	
mlg sin���� �mll�

	 sin�� uFscale

md �ml sin
	 �

������

�� � �

�� �
��md �ml�g sin��

�
	
mll�

	 sin����� uFscale cos �

l�md �ml sin
	 ��

where

s position of the trolley drive �m�

��

v velocity of the trolley drive �ms���

md mass of the trolley drive �kg�

ml mass of the container load
 the claw
 and the connecting
cable

�kg�

l length of the connecting cable �m�

� angle of the cable �rad�

� angular velocity of the cable �rads���

g acceleration of gravity �ms�	�

u control of the trolley drive ���

Fscale scaling factor �N �

The model is formulated in the modeling language Omola in the �le crane�om �see ap

pendix B������ The modeling and simulation environment OmSim can be used to in

teractively perform initial value simulations� OmSim is freely available in binary form
for several platforms
 see http���www�control�lth�se�� cace�omsim�html� It is not
required by Omuses�

Transferring the Model from OmSim to Omuses

The procedure described in this subsection should be seen as a rapid prototype� It was
developed in order to study the possibility of the connection of Omuses with an advanced
modeling and simulation environment� We decided to include it here
 because it has
already been successfully applied to quite complex system models that practically can
not be written down in state
space form by hand
 e�g� �Franke and Hellstr�om
 ������

OmSim has the ability to output the compiled model equations and the initialization of the
model variables symbolically� Based on this �at model output
 a simple lexical translator
to C has been implemented in the �le fla�c�l
 which is included in the distribution� An
executable can be generated using flex and a C compiler�

To transfer the model
 �rst the �le crane�fla with the model equations and variables is
generated�

� omsim crane�om init�ocl � crane�fla

After the startup of OmSim and the execution of the script �le init�ocl
 a simulator
panel should appear that shows the state Init in its upper right corner� Choose the menu
Debug � Flat model and exit OmSim�

The Omola
like syntax in crane�fla is translated to C and written into the �le crane�c�

� fla�c � crane�fla � crane�c

The �le crane�c �see appendix B����� contains the following code fragments that can be
inserted into a template for an Omu Program�

� The bound parameters and the implicit discrete part needs to be calculated once
during the problem setup�

�	

� The dynamic model equations should be calculated in continuous���

� The continuous part of the Omuses state vector is assigned to the according model
variables�

� The initial values of the states can be used in two ways in setup��� to de�ne initial
state constraints and to specify starting values for the initialization of the problem�

� The setting of parameter default values and the creation of interface elements should
be done in the constructor�

� The parameters and time
independent variables are declared of type double
 the
time
dependent model variables are declared of type adouble�

� Finally
 a list of the Tcl names of all unresolved model variables is written� Only
external model inputs should appear here�

Known insu�ciencies of fla�c are�

� The Flamola input should be replaced by a well de�ned language for �at models
and the grammar should be analyzed�

� The translator does not support implicit equations and multiple derivatives of the
form x���

� It can be neccessary to manually modify the generated C code�

 Function names are not translated from Omola to C �e�g� ln is used for the
natural logarithm��

 Powers of the form x�y are only translated to pow�x�y�
 if x is a variable name
and y a constant number�

 Conditional assignments �that should be avoided if possible"� may lack a type
cast to adouble for compound expressions in the alternative branch� This can
be solved by enclosing the expression into parentheses�

These insu�ciencies are detected by a C�� compiler
 so that they do not result in wrong
executables� The correctness of the transferred model can be checked by observing the
results of the initial value simulation �init solution��� after the problem setup�

For the following explanations we introduce the writing

�x � fm�t�x� u�p� ������

for the model equations ������ using the continuous
time state vector

x � ��� �� v� s�T ������

and the parameters p�

��

Parameter and initial states estimation problem

The �rst problem we want to treat for the container crane is the estimation of the mass of
the load ml and of initial states x� � x�t��� The applied control force u�t�� t � �t�� tf � is
assumed to be known and measurements of the resulting trajectory of the trolley position
s�t� are available� The basic task for the solution of this problem is the minimization of a
least squares criterion for the deviation between the set of measurement data f#s�tkk�� tkk �
�t�� tf �� kk � �� � � � � KKg and the simulated model variables s�tkk� at the measurement
times�

KKX
kk��

k#s�tkk�� s�tkk�k	 � min
x��ml

� ������

subject to

�x � fm�t�x� u�ml�� t � �t�� tf �� ������

x�t�� � x��

where

u�t� � $u� t � �t�� tf�� ������

The according Omuses problem formulation can be found in the �les Prg CranePar��hC��
The method model eq�� is de�ned for the calculation of the dynamic model equations�
In addition to the four continuous
time states
 one constant discrete
time state x��� is
introduced for the unknown load ml� As Omuses needs to calculate the sensitivities of the
model equations with respect to this parameter
 the variable ml and its descendant mdl
are rede�ned of type adouble� The state x��� is assigned to ml
 and mdl is recalculated�
Furthermore the prede�ned control $u is assigned to u�

The least squares criterion ������ is implemented in the method update�� in two ways �
multistage and singlestage� In both cases there are KK sample periods�

In the multistage case
 one stage is used for each sample period �K � KK�� This results
in ��KK � �� optimization variables� The criterion is formulated directly as function of
the optimization variables�

In the singlestage case �K � ��
 there are � optimization variables for the initial states
of the model� The criterion is de�ned for the �rst measurement point as function of
the initial state variable s�t��
 and for the following measurement points as function of
intermediate results of the numerical integration�

No constraints are de�ned� Normally at least something should be known about initial
states and valid ranges of free variables� The careful speci�cation of bounds is often useful
for the solution process� The values x� � ��� �� �� ���T and the �scaled� default value of
the load ml � ����kg are used as initial guess in the method setup���

The method disturb�� and the according Tcl command prg disturb are de�ned to apply
a simple disturbance to the measurement data� This makes the parameter estimation more

��

K ad f Evals Iters Time ml ��t�� ��t�� v�t�� s�t��
�� yes ������� �� �� � ��	� ������ ����	�
���	� �����
� yes ������� �� �	 � ��	� ������ ����	�
���	� �����

�� no ������	 �� �� � ��	� ������ ����	�
���	� �����
� no ������� �� �� �� ���� ������ ������
����� �����
Reference with maxdev on #s�tkk� 	����m ���� ������ ������
����� �����

Table ���� Results for the parameter and initial states estimation problem� The table
shows the number of stages K
 the usage of automatic di�erentiation �ad�
 the �nal
residual value f
 the numbers of calculated residual values and iterations
 the consumed
CPU
time �s� using a Sun UltraSPARC �!��� workstation
 and the obtained values�

realistic
 as the measurements are simulated� The OmSim simulator can be used to record
data by invoking

� omsim crane�om record�ocl

The script �le record�ocl initializes the crane model
 sets values for the container mass
and the initial states
 performs an initial
value simulation over the time horizon t �
��s� �s�
 and writes data samples for the trolley position s�t� into the �le record�plt�

The parameter and initial states estimation
 based on the data in record�plt
 is initial

ized and driven from the script �le cranepar�tcl� For its execution type

� run CranePar

Table ��� lists calculated results for four di�erent option settings done in the �le
cranepar�tcl� Again we make the observation that the problem can be solved with
signi�cantly less iterations in its multistage formulation
 resulting in a faster solution�
If the automatic di�erentiation is switched o�
 then the solver is not able to obtain the
optimum with the same accuracy anymore� The sensitivities are then calculated by using
�nite forward di�erences �the extra function evaluations are not listed in table ����� The
optimization algorithm fails close to the optimum in �nding further improvements� This
can also lead to a stall error because the step size breaks down before the solution has
been calculated with the required accuracy� The stopping criterion could be relexed in
these cases� However
 especially when many iterations are performed
 slow convergence
might suggest a bad result�

The calculation of sensitivities by using �nite forward di�erences was implemented for
testing purposes prior to the introduction of automatic di�erentiation into Omuses� It
should not be needed anymore�

Optimal control problem

In this subsection we want to solve an optimal control problem numerically� The unknown
continuous
time control trajectory is parameterized and a multistage problem is formu

lated and solved for the parameters� The resulting approximation of the optimal control
trajectory is used to perform an initial
value simulation with OmSim�

��

The optimal control problem is

tf � min
u�t�

� t � ��� tf � ������

subject to

�x � fm�t�x� u�p�� ����	�

x��� � ��� �� �� ���T � x�tf� � ��� �� �� ��T � ������

ju�t�j � �� ������

j��t�j � �
�

�	�
� � � s�t� � ��� ������

Here we approximately describe u�t� with the continuous
 piecewise linear function u�p�
with K � � degrees of freedom for the initial value u��� and for the slopes uk� k �
�� � � � � K � �� The Omuses problem de�nition can be found in the �les Prg Crane��hC��
It is based on the automatically generated C code fragments listed in appendix B�����

The bound parameters and implicit discrete part is calculated once in setup���

The method model eq�� is de�ned for the calculation of the dynamic model equations�
Instead of applying the control parameter u��� directly
 the additional continuous
time
state x��� is introduced for the control trajectory
 and u��� is used to describe its slope�
Furthermore the constant discrete
time state x��� with free initial and �nal value is
introduced for the unknown �nal time tf � The result of model eq�� is scaled with the
�nal time in continuous���

The dimensionless horizon ��� �� with K stages and one sample period per stage is allocated
in the method setup stages���

The initial and �nal state constraints ������ and the control bounds ������ are speci�ed
in setup��� The state bounds ������ are applied to the initial state values of each stage
�except for the �rst stage where all states are �xed�� The impact of this simpli�ed imple

mentation of the trajectory constraints will be discussed below� Furthermore
 a reasonable
lower bound for x��� is speci�ed�

The method update�� de�nes the state x��� to be constant and implements the criterion
�������

The control law

u�t� �

�
�#u�tf �� t � tf��
#u�tf�� else

#u�tf � �
��md �ml�s�t��

tf 	Fscale

������

is implemented in setup��� This control is a �rst approximation of the solution� It can
be derived under the assumption that all moving mass is concentrated in the trolley drive

and that the control task should be ful�lled for s�tf � and v�tf�� The initial guess tf � ��s
can be obtained with the help of equation ������
 using the given mass parameters
 the
initial position
 and the control bounds of the problem�

��

The setup and execution of the optimization solver is coded in the script �le crane�tcl�
When invoking

� run Crane

the following solution protocol should be written for K � �� stages�

it obj ��grdL�� ��inf�� � qp res� ��s�� s�Qs stepsize

� �� � 	�
� � �	 sub� ����� ��������� �

� ���
�	
 � ����� � �� opt� �	��� �����e��� �

� ������� ������ ������ � 	� opt� ����� ����	
	� �

	 �����
� ������� ������ � � opt� �����
 ����
e��� �

 ������� �����
� ��
��e��� � � opt� ������			 �����e��
 �

� ������� �����e��� ���
�e��	

�� qp�it

Result� optimal

The QP
solver result sub in the �rst iteration means that no feasible solution could be
found based on the linear approximation of the nonlinear constraints at the simulated
initial trajectories� Nevertheless the returned �suboptimal� solution is useful for the SQP

solver in this case� Starting with the second iteration
 the problem is solved without
problems� Figure ��� shows the calculated trajectories for u
 s
 and � with K � ���
stages� The initial solution for � �grey trajectory� shows a strong oscillation� This is the
reason for the infeasible �rst iteration� The trouble can be circumvented by changing the
initial solution in a way that reduces the oscillation
 e�g�

� restrict the initial state value in each stage by de�ning the method
init simulation��

� relax the initial time guess
 e�g� to tf � ��s

� apply the constant initial control u�t� � �#u��� t � ��� tf �
 not considering the �nal
state constraint for v�tf ��

Finally the solution has to be validated� In particular it should be reminded that the
continuous
time trajectory constraints for the states � and s have only been de�ned at
K�� communication time points so far� This simpli�es the numerical solution of the prob

lem� But the continuous
time state trajectories could violate their bounds between the
communication points� Here we check the solution with the help of an initial
value simula

tion� The script crane�tcl writes the calculated optimal values into the �le control�plt�
The piecewise linear control trajectory is used as input for OmSim� The according setup
is coded in the �le control�ocl�

� omsim crane�om control�ocl

Please check the simulation stop time �it should be equal to the calculated optimal value�
and press the Start button� According to the simulation
 the trajectory constraints are
practically ful�lled for K � ��� The small violations of the bounds for ��t� completely
disappear for K � ���� A serious violation can be seen for K � ��� Already the
optimization result suggests that the approximation of u�t� is insu�cient in this case�

��

time [s]

0 5 10

u
 [

kN
]

-6

-4

-2

0

2

4

6

time [s]

0 5 10

s
[m

]

0

10

20

30

time [s]

0 5 10

p
h

i [
ra

d
]

-0.4

-0.2

0

0.2

0.4

Figure ���� Unbounded initial values �grey� and calculated optimal trajectories �black�
for the crane control problem with K � ��� equally sized stages and piecewise linear
control parameterization�

��

Alternatively to the increase of K
 the sample time points could also be redistributed �the
current vector of time points ts can be accessed through the interface element prg ts

see e�g� cranepar�tcl��

However
 sometimes the proper choice of communication time points allone does not give
satisfactory results� �In the crane example
 the control parameter of each stage could
dirictly be used to approximate u�t� piecewise constant
 see Prg Crane�uconst�C� But
then the solution for ��t� would have steady oscillations
 crossing the bounds at the
communication points�� In such cases the problem formulation must be extented
 e�g��

� Modify the control parameterization� �In the crane example
 the oscillations do not
occur with the chosen continuous
 piecewise linear control parameterization��

� Introduce additional constraints for intermediate values of the state trajectory� The
di�erence to the introduction of additional stages is
 that the control parameters
are the same for all sample periods of a stage� �In the crane example with piecewise
constant control parameterization
 the problem can be solved by de�ning two sample
periods per stage and a constraint for the intermediate value of ���

� De�ne a trajectory constraint by using a continuous
time state variable�

In a practical application
 the calculated optimal control normally can not be applied
directly to the modeled process
 caused by model uncertainties and unknown disturbances�
But at least it can be used as a reference� The optimal objective function value gives us
a limit for potential improvements of an implemetation�

An important practical approach is the iterative re�nement of the optimal control based
on new knowledge about the process� The two examples explained for the container
crane
 the adaptation of a system model to measurements and the calculation of the
optimal system control subject to constraints
 are basic algorithmic steps in Model
based
Predictive Control �MPC� �Clarke
 ������

��

Chapter �

HQP

��� Introduction

During the last years
 we have been successfully applying the method of sequential
quadratic programming �SQP� to the solution of optimal control problems� Thereby

continuous time problems are discretized and treated as structured
 large
scale nonlinear
programming problems �Arnold et al�
 ������

The decision for the development of HQP was made because of several reasons� First
of all
 theoretical properties and practical results reported for interior point methods in
the literature
 e�g� �Wright
 �����
 inspired us to apply them to our problems as well�
Moreover
 we wanted to exploit the powerful computing facilities widely available nowa

days� The optimization solver HQP has been designed using general purpose algorithms
and data structures for nonlinear programming and matrix algebra� That is why it is not
only applicable to discrete
time optimal control problems
 but also to other optimization
problems�

The solver is based on sparse matrix codes of the Meschach library for matrix compu

tations in C �Steward and Leyk
 ������ The tool command language Tcl �Ousterhout

����� was chosen for setting parameters and for controlling the execution�

Two di�erent interfaces are currently available for the speci�cation of optimization prob

lems� During applications to several engineering problems
 we have been developing the
interface DOCP for discrete
time optimal control problems� Such multistage problems
can be formulated in the programming language C��� The DOCP interface is accessed
by Omuses �see chapter ���

General large
scale optimization problems
 formulated in the standard input format �SIF�

can be passed trough a low
level interface to the constrained and unconstrained testing
environment �CUTE� �Bongartz et al�
 ������ The treatment of several available test
problems has been very helpful for the development of the HQP solver� Furthermore
 the
low
level interface can be used for testing purposes� We have installed an online compute
service that can be accessed through the Internet� All examples discussed in this chapter
are taken from the CUTE collection�

��

Meschach library

SQP solver

QP solver

Matrix solver

Parameter and control interface

Problem

P
ro

bl
em

 in
te

rf
ac

e

update
Hessian

Figure ���� Modular structure of HQP� The arrows symbolize accesses� All modules are
connected to the parameter and control interface and use the Meschach library for matrix
computations�

��� Outline of the algorithm

This section gives a short overview of the overall structure of HQP and the implemented
numerical methods� For more details is referred to Franke �����a��

Figure ��� shows the component framework of HQP� It is implemented in the programming
language C��� The scripting language Tcl is used for con�guration and for control of
execution�

����� Problem formulation

HQP addresses the general constrained nonlinear optimization problem in the variable
vector x
 stated by the criterion f�x�
 the equality constraints h�x�
 and the inequality
constraints g�x�� The problem is staged as

f�x�� min
x
� f � IRn � IR� �����

subject to�

h�x� � �� h � IRn � IRme � �����

g�x� � �� g � IRn � IRm� �����

f�x�
 h�x�
 and g�x� are assumed to be su�ciently smooth�

��

����� The SQP solver

A Lagrange
Newton
type SQP algorithm treats the problem ����� � ����� with the La

grangian function

L�x�y� z� � f�x�� yTh�x�� zTg�x�� �����

The Lagrangian multiplier vectors y � IRme and z � IRm are introduced for the equality
and inequality constraints
 respectively� The algorithm attempts to �nd a stationary point
of the Lagrangian with the help of solutions of local
 linear
quadratic approximations to
the nonlinear optimization problem ����� � ������

In each SQP iteration i
 a quadratic approximation to the Lagrangian ����� and local
linearizations of ����� � ����� at a given iterate xi of the variables x are used to formulate
the convex quadratic optimization problem

�

�
sTQis �

�
�f�xi�

�x

�T

s � min
s

�����

subject to�

�h�xi�

�x
s � h�xi� � �� �����

�g�xi�

�x
s � g�xi� � � �����

in the variable vector s� The solution si of ����� � ����� is taken as descending direction
for a suitable line
search function
 in order to obtain an improved iterate xi���

Two SQP modules were written for HQP based on the algorithms of Powell �Powell

���	�
 and Schittkowski �Schittkowski
 ��	��� In general
 we would recommend Powell�s
algorithm
 which behaves in our applications very robust for the solution of large
scale
problems� The implementation of Powell�s algorithm has been extended with a watchdog
strategy �Chamberlain et al�
 ��	�� to further improve the robustness�

The linear approximation of nonlinear constraints may give subproblems without feasible
solution
 even though a solution of the nonlinear problem exists� Normally
 additional
slack variables are introduced in an SQP algorithm �Powell
 ���	�
 �Tone
 ��	��� In
HQP
 this e�ect is accounted for by the QP solver
 where we exploit the properties of the
interior point algorithm �see subsection �������

The quadratic approximation of the Lagrangian ����� is probably most crucial to the
advantageous application of SQP
type solvers to large
scale problems� First of all
 the
matrix Qi must be positive de�nite
 to get a convex quadratic subproblem
 which can be
treated e�ciently by the QP solver� Secondly
 Qi should be su�ciently sparse
 in order
to allow the e�cient application of sparse matrix solvers�

The sparsity requirement is often ful�lled by the analytical Lagrangian Hessian

Qi�� �
� 	L�xi���yi� zi�

� 	x
x� ���	�

�	

whose sparsity is inherent to many large
scale problems
 see e�g� �Conn et al�
 ������
Positive de�niteness is guaranteed by HQP with the diagonal o�sets

qi�i �� max�	�
X
j ��i

jqi�jj� qi�i�� i� j � �� � � � � n �����

�Gerschgorin modi�cation�� However
 often this modi�cation results in very poor con

vergence� Other authors add a constant value
 which is based on the Gerschgorin bound
of the most negative eigenvalue of the Lagrangian Hessian and an additional Levenberg
parameter
 to all diagonal elements �Betts and Frank
 ������

In general
 numerical Hessian updates are preferred in nonlinear programming� The pos

itive de�nite update for sparse Hessians has been an open area of research for many years
�Fletcher
 ������ In the current version of HQP
 we have implemented dense BFGS up

dates for separate diagonal blocks of the Lagrangian Hessian� This partitioned variable
metric update has proven to be very useful for the solution of multistage problems
 the
actual intension of the HQP solver� In order to be able to apply the partitioned BFGS
update to general nonlinear programming problems
 we are experimenting in the CUTE
interface with the automatic introduction of dummy variables� The current implemen

tation of this feature is on an early stage and can probably not be completed without
reimplementing some CUTE procedures �see also subsection �������

Thirdly
 HQP provides a simple diagonal scaling procedure for the Lagrangian Hessian�
According to our experience
 this is the most reliable option for the solution of gen

eral large
scale nonlinear programming problems
 even though the Newton
type solution
method actually degenerates to a scaled gradient method in this case�

����� The QP solver

Most expenditure for solving the nonlinear problem ����� � ����� is propagated by the
SQP solver in the form of convex quadratic subproblems ����� � ����� to the QP solver�

�It �the SQP solver� can be programmed in an afternoon if one has a quadratic program

ming subroutine available ��� �Powell
 ���	��

Because of the importance of the QP solver
 the name HQP was chosen for the whole
nonlinear optimization tool� H stands for huge
 a synonym for large
scale
 as the letters
L and S are already widely stressed in the optimization community�

Two di�erent implementations are currently available with HQP� Mehrotra and Franke�
Mehrotra�s primal
dual predictor
corrector method �Mehrotra
 ����� was implemented
because of its good reputation in the literature for linear programming
 e�g� �Wright

�����
 by E� Arnold for HQP�

The other QP solver is derived from several interior point algorithms known from the
literature
 with most impact from �Wright
 ������ Some modi�cations were introduced
for HQP with the aim to improve its performance and robustness �Franke
 ����a��

According to our experience the overall performance of both QP solvers is about the same�
However
 for a speci�c problem one of them may perform signi�cantly better than the
other and vice versa�

��

With variable substitution in ����� � ����� the quadratic programming subproblem can be
rewritten as�

�

�
xTQx � cTx � min

x
������

subject to�

Ax � b � � ������

Cx � d � � ������

Q is supposed to be symmetric positive semide�nite and A must be of full rank�

A barrier parameter
 � � and a slack vector w � Cx � d are introduced for the
treatment of inequality constraints� The objective function ������ is extended to�

�

�
xTQx � cTx �

mX
j��

lnwj � min
x

������

The solution of the quadratic subproblem is characterized by the extended Karush
Kuhn

Tucker conditions �Z � diag�z�� W � diag�w�� e � �� � � � ��T ��

Qx � c � ATy � CTz � � ������

Ax � b � � ������

w � Cx � d � � ������

z � � ������

ZWe �
e � � ����	�

 � � ������

For each
 � �
 equations ������ � ����	� characterize a unique solution �x�y� z�w�� For

� �
 equation ����	� reduces to the complementary condition zTw � �� ������ � ����	�
describe then the Karush
Kuhn
Tucker conditions of the original quadratic subproblem
������ � ������� The result vectors y and z are used by the SQP solver as approximations
for the Lagrange multipliers�

The numerical solution of the nonlinear equation system ������ � ������ is obtained with
an iterative Newton procedure
 starting with suitable values x�
 y�
 z�
 w�
 and
� �a
further augmentation of ������ � ������ for obtaining a trivial starting point is discussed
in �Franke
 ����a��� The following linear equation system is passed to the matrix solver
during each QP iteration j��

BBB�
�Q AT CT �

A � � �

C � � �I
� � Wj Zj

�
CCCA
�
BBB�

�xj

�yj

�zj

�wj

�
CCCA �

�
BBB�

�

�

�

ZjWje�
je

�
CCCA ������

A very interesting property of interior point algorithms is that the failure of the comple

mentary condition
 i�e� zTw � �
 is continuously decreased over the iterations� In this
way
 one has a kind of measure for the distance of a current iterate from the optimum�
This is the basis for convergence proofs
 e�g� �Monteiro and Adler
 ��	��
 and motivates
further developments
 e�g� inexact Newton methods �Pang
 ��	��� In HQP
 we exploit
this property for the treatment of infeasible subproblem approximations�

��

����� The matrix solver

0 500 1000

0

200

400

600

800

1000

1200

nz = 6032

Original

0 500 1000

0

200

400

600

800

1000

1200

nz = 6032

RCM

Figure ���� Sparsity pattern of the coe�cient matrix ������ for the example BRITGAS
of the CUTE collection� In the original matrix one can see in the upper left part the
Hessian Q for the ��� problem variables� Below and right there are matrices A and
AT
 respectively
 for ��� nonlinear equality constraints� In the lower left and the upper
right parts there are C and CT
 resulting from at all ��� variable bounds� Last but not
least the diagonal matrix Z��W �nds in the lower right part� The pro�le of the whole
coe�cient matrix can be reduced considerably with symmetric Reverse
Cuthill
McKee
�RCM� ordering�

The equation system ������ has to be solved once in each QP iteration� Currently four
di�erent matrix solvers are available with HQP�

The coe�cient matrix of ������ can be made symmetric by eliminating �wj � C�xj� This
results in the symmetric
 inde�nite system

�
B�
�Q AT CT

A � �

C � Z��j Wj

�
CA
�
B�

�xj

�yj

�zj

�
CA �

�
B�

�

�

Wje�
jZ
��
j e

�
CA � ������

We apply a diagonal scaling as proposed by Wright ������ in order to improve the nu

merical stability�

In many cases it is advantageous to further reduce the equation system prior to its fac

torization� This can be done by eliminating the inequality constraints from ������� This
results in the reduced system

�
�Q�CTW��

j ZjC AT

A �

��
�xj

�yj

�
�

�
�CTW��

j Zjr
j
�

�

�
� ������

�zj � W��
j Zj�r

j
� �C�xj��

r
j
� � Wje�
jZ

��
j e�

��

The row and column order of the coe�cient matrices in ������ and ������ is globally ana

lyzed and permuted with a Reverse
Cuthill
McKee algorithm �Du� et al�
 ������ Figure
��� shows sparsity patterns of an exemplary coe�cient matrix of the form ������ and its
RCM permutation� A sparse implementation of the factorization for symmetric
 inde�nite
matrices by Bunch
 Kaufman
 and Parlett �Bunch et al�
 ����� is applied afterwards� The
implementations of the BKP matrix factorization and the RCM ordering were decoupled
from the HQP framework and made as extensions to the Meschach library for matrix
computations�

With the so called Schur complement method
 see e�g� �Steinbach
 �����
 the inde�nite
system ������ can be further reduced to two positiv de�nite equation systems of smaller
dimension� An implementation for HQP has been made by H� Linke� In general the solu

tion of de�nite systems is advantageous� Furthermore this method treats overdetermined
contstraints implicitly �currently all other matrix solvers raise an error�� However
 draw

backs of this method are that the condition numbers of the factorized matrices become
worse with the reduction and that the sparsity structure may be destroyed�

The fourth matrix solver developed by E� Arnold performs a block
wise elimination� It
takes advantage of the stage
wise formulation of problems speci�ed using Omuses� The
algorithm is an extension of the Ricatti recursion for unconstrained linear
quadratic opti

mal control problems
 see �Arnold
 ��	��
 �Arnold et al�
 ������ Applied to an example in
�Arnold et al�
 ���	�
 the specialized method outperforms clearly the other matrix solvers
with respect to computational time� An additional advantage of the method is that no
dynamic allocation of memory is needed during the iterations if dense submatrices are
used�

��� The parameter and control interface

All modules of HQP may be accessed through an interface
 implemented with the tool
command language Tcl �Ousterhout
 ������ The provided interface elements may be
used in combination with standard Tcl commands
 e�g� for conditional execution or for
�le accesses� For a listing of available interface elements see appendix A�

��� The DOCP problem interface

The DOCP �Discrete
time Optimal Control Problem� interface has been developed for
multistage problems of the form ������������ The multistage problem is transformed to a
large scale nonlinear programming problem of the form ����������� as follows�

The state variables xk
 the control variables uk of all stages k
 and the �nal states xK are

��

assembled to one large vector x � IRn of optimization variables

x �

�
BBBBBBBBB�

x�

u�

���
xK��

uK��

xK

�
CCCCCCCCCA
� ������

The optimization criterion �����
 the system equations �����
 the bounds �����
 and the
constraints ����� are assigned to the high
dimensional algebraic functions

J�x� � FK �
X
k

fk
� � ������

h�x� �

�
BBBBBBBBBB�

f� � x�

���
fK�� � xK

h�

���
hK

�
CCCCCCCCCCA
� g�x� �

�
BBBBBBBBBBBBBBB�

x� xl
xu � x

c� � c�l
���

cK � cKl
c�u � c�

���
cKu � cK

�
CCCCCCCCCCCCCCCA

� ������

The equality constraints h� � � �hK result from those components of ����� and ����� that
have equal lower and upper bounds
 e�g� initial or �nal state constraints�

Please see the simple example provided with the distribution for details about using the
DOCP interface�

��� The CUTE problem interface

The constrained and unconstrained testing environment �CUTE� �Bongartz et al�
 �����
is developed in conjunction with the solver LANCELOT for large
scale nonlinear opti

mization �Conn et al�
 ������ It is freely available
 including an extensive collection of
interesting nonlinear programming examples and a set of Fortran procedures for their
transformation to standard formulations�

For the following explanations is assumed that CUTE is installed on your machine and
that the environment variable CUTEDIR is set to the installation directory
 see �Bongartz
et al�
 ������ See the distribution�s README �le for the additional installation of HQP�

After successful installation you can run the example HS�� as follows�

� Go to the problems directory�

cd �CUTEDIR�problems

��

� Run HQP on HS��� �You should adapt your environment for repeated applications��

�CUTEDIR�interfaces�sdhqp HS		

The shell script �CUTEDIR�interfaces�sdhqp executes the SIF decoder on the �le
HS		�SIF� The SIF speci�cation is translated and written into a number of Fortran
�les� Afterwards the script �le �CUTEDIR�interfaces�hqp compiles the Fortran
modules� The executable program hqpmin is created and executed�

� You should get the following output�

Problem name� HS��

Double precision version will be formed�

The objective function uses � nonlinear group

There is � nonlinear inequality constraint

There are � free variables

Semibandwidth� �

it obj ��grdL�� ��inf�� � qp res� ��s�� s�Qs stepsize

� 	�
��� ��� �
��� � �� opt� ��
�
 ���� �

� 	�����
� ��
�� ����
 �
 opt� �����
��
� �

� 	���
��� ��
�� ���

 �
 opt� ���
� ���
� �

 	�����
� ��

� ���
��
 �
 opt� ���
��� ����
��
 �

 	��
���� �������� ��
��e	�� �
 opt� ����
��� �����e	�� �

� 	��
��
� ������
� �����e	�� �
 opt� �����
��

����e	�� �

� 	��
��
� ��
�
e	�� ���
�e	�� �
 opt� ��
��e	�� ���
�e	�� �

� 	��
��
�
��
�e	�� ���
�e	�� �
 opt� �����e	�� ����
e	��

 qp	it

HQP ���� optimal solution

f � 	��
��
�

f�evals� �

���u ���s ���� �� ���k ���io �pf��w

The �rst �ve lines �output coded in the SIF decoder� characterize the problem� Note
that HQP is only provided in a double precision version� The following lines �output
coded in �CUTEDIR�hqp�hqp cute�tcl� give a brief overview about the solution
process� First
 the semibandwidth of the permuted matrix ������ is printed� Each
line of the following table shows�

�� the SQP iteration

�� the objective function value

�� the norm of the gradient of the Lagrangian �����

�� the infeasibility norm �i�e� maximal violation� of a constraint

�� the number of QP iterations and the �rst three letters of the QP result

�� the maximum norm of s

�� the value of sTQs

��

	� the obtained stepsize for the SQP iteration

Afterwards
 the cumulative number of QP iterations
 the HQP version and the
result
 the obtained function value
 and the number of function evaluations are
shown �output coded in �CUTEDIR�hqp�hqp cute�tcl�� The last line �output coded
in �CUTEDIR�interfaces�hqp� summarizes execution times of HQP
 as provided by
the Unix command time�

� The solution is written in SIF format to the �le SOLUTION�d in the current working
directory �output coded in �CUTEDIR�tools�sources�hqpma�f��

The solver parameters can be changed in the �le �CUTEDIR�hqp�hqp cute�tcl�

��� Using HQP through the Internet

The easiest way for using HQP is to exploit our optimization service� It is built upon a
batch compute service of the Computing Center of the Technical University of Ilmenau
and runs on a pool of cooperating workstations�

To the outer world
 the service appears like an ordinary user� Newest information can be
obtained in the World Wide Web from http���www�rz�tu�ilmenau�de�� hqp��

Requests can be submitted via the Network
Enabled Optimization System �NEOS Server�
at Argonne National Laboratory �see http���www�mcs�anl�gov�home�otc���

The currently supported format for describing an optimization problem is SIF �Standard
Input Format� �Conn et al�
 ������ It is backward compatible with the MPS format for
linear programming�

��� Computational examples

The examples discussed in this section are taken from the small CUTE collection �Bon

gartz et al�
 ������ The listed tables show

�� problem name in the CUTE collection

�� number of variables
 equality constraints �including �xed variables�
 and inequality
constraints �including bounds�
 respectively

�� semibandwidth of the RCM
ordered coe�cient matrix in ������

�� the obtained objective value

�� number of objective calculations

�� number of SQP iterations �the number of gradient and Hessian calculations is by
one higher�

�� cumulative number of QP iterations

	� CPU time of HQP in seconds using a Sun UltraSPARC station �!���

��

Table ���� Solved examples from di�erent areas of application using default options�

Name n me m sbw f Evals Iters QP�Iters Time

AUG�D ���
 ��

 ��� �
����� � � � �

AUG�DQP ���
 ��

 ���
 ��� ������ � � �� ���

BRITGAS ��
 ��
 ��� ��
�

 �� �
 ��� ��
CHEMRCTA �

 �

 �

 � � � � �� �

ROTDISC 	
� �
� ��� ��� �����
� ��� ��� ��		 ���

ZAMB� �	�� ���
 �	�
 �� �������� �
 �	 ��
 ���

��	�� Solved examples

All examples in this subsection were treated with default solver options� Table ��� sum

marizes the results�

AUG�D is the formulation of a boundary value problem for a two
dimensional partial
di�erential equation �PDE� as convex quadratic programming problem� It can be solved
in one QP
iteration because no inequality constraints are present�

AUG�DQP is a variant of AUG�D with lower bounds on the variables� �� QP
iterations
are needed in order to �nd the bound
constrained solution� The convex
 linear
quadratic
problem still can be solved in one major iteration�

BRITGAS describes a high pressure gas network� The network has �� nodes and is
observed over 	 hours with a time
step of one hour� The sparsity pattern of the internally
solved Karush
Kuhn
Tucker system was shown in �gure ����

CHEMRCTA is a nonlinear equation system with lower bounds on the variables describing
a chemical reactor model�

ROTDISC is an example for the design of a rotating disc of minimal weight subject to
constraints for the engine of a small civil jet�

ZAMB� is a discrete
time optimal control problem for the Zambezi multi
reservoir hy

dropower system� The problem is explained in �Arnold et al�
 ������ In �Franke and
Arnold
 �����
 we used a variant of this problem as example to demonstrate the moderate
increase of the computational time needed by HQP to solve inequality constrained prob

lems of increasing dimension� In the variant discussed there
 we neglected the reference
control trajectories
 which are considered with positive quadratic terms in the objective
function �parameter PSI�
 so that the control and state bounds become more important
at the solution�

��	�� Experiments with stretching problems

Currently
 the Lagrangian Hessian of a nonlinear programming problem passed through
the CUTE interface is approximated by default by a diagonal matrix� Of course this
is not satisfactory and there �nds many examples in the CUTE collection
 where the
number of performed SQP
iterations is very high� Often exact second order derivatives

��

Table ���� Improvements with stretching� The upper lines show results obtained with
default solver options� the lower lines show results obtained with CUTE ST and BFGS�

Name n me m sbw f Evals Iters QP�Iters Time

ROSENBR �

�

 ���� ���� ���	 �	

ROSENBR �

 �
�

 �� �� ��

CATENA �
� ��

 � ������
 ��	�	 ����
 ����� �	�

CATENA 		� ���
 � ������
 �� �� �� �

ORBIT� ��� �
� ��� ��� ������
 �� �� 	�� ���

ORBIT� ��� ��	 ��� �� ������
 �� �� ��� ��

and the Gerschgorin modi�cation ����� do neither improve the performance in those cases�
For problems passed through the high
level interface Omuses �see chapter ��
 we have
made best experiences with positive de�nite BFGS updates for separate diagonal blocks�
Unfortunately
 this update can not be applied to problems passed through the CUTE
interface
 even if the underlying optimization problem would allow it� That is why we
made the alternative implementation CUTE ST
 which analyzes the nonlinear groups of
the SIF formulation and introduces equality constrained dummy variables
 in order to
stretch the Lagrangian Hessian�

Table ��� summarizes results obtained with the solver options CUTE ST and BFGS
 com

pared to default settings�

ROSENBR is the well known Rosenbrock banana valley� Due to the small problem size

it can be solved using dense BFGS update anyway�

CATENA models a hanging catenary that consists of N � ��� rigid beams� The beams
are concatenated to a freely hanging chain
 which has �xed end positions� The catenary
is described by using N � � coordinate points in the three
dimensional Cartesian space

which results in ��N � �� � ��� optimization variables� The optimization problem is to
�nd the beam positions by extremizing the total potential energy� After stretching the
problem
 each beam is described by � variables for its two end points
 which results in
�N � ��� optimization variables� Additional linear equality constraints are introduced
for the junction conditions between the beams� In this way
 separate BFGS updates
can be made for the Hessian blocks that correspond to the beams� The solution of the
stretched version of this non
convex problem is obtained signi�cantly faster due to the
better Lagrangian Hessian approximation�

ORBIT� is an other typical example for the usefulness of stretching� It is a discrete
time
optimal control problem with the objective to minimize the time needed for a spacecraft to
change its circular orbit around the earth subject to a constrained control magnitude� Be

sides the discrete
time state and control variables
 one additional variable is introduced
for the free �nal time� This additional variable ingoes into all nonlinear equality con

straints that result from the physical model� When applying stretching
 the time variable
is multiplied� Besides the possible application of partitioned BFGS update to the resulting
Lagrangian Hessian
 the sparsity structure of the problem is improved �semibandwidth
�� instead of ����� That is why the stretched version of the problem can be solved about
�� times faster with HQP�

��

Unfortunately
 not much information about the separability structure of large
scale non

linear programming problems formulated in SIF is available with the CUTE procedures�
The following information is missed�

� Only the nonlinear groups
 but not the elements are known� There �nds many
examples �e�g� DALLASL
 HUESTIS
 TRAINF
 UBH��
 where only one nonlinear
group is de�ned for the whole objective function� This results in a full Lagrangian
Hessian and often in memory over�ows in the CUTE procedures using the �nite

element data structure�

� For groups that contain linear and nonlinear variables
 the according Lagrangian
Hessian block contains not only the nonlinear variables
 but also the linear variables�
This is the reason
 why the partitioned BFGS update of HQP practically does not
work without stretching� Often too much dummy variables need to be introduced
and the variable metric update is complicated numerically�

� The gradient of the objective function can not be calculated for separate groups�
That is why the gradient of the Lagrangian can not be determined for some stretched
problems�

� User
de�ned variable scaling is not known�

In order to further develop the treatment of problems formulated in SIF
 we probably
needed to directly access the Fortran procedures generated by the SIF decoder� Instead
of doing this
 we have been concentrating the recent development on the alternative
high
level interface Omuses �see chapter ��� Nevertheless
 the availability of CUTE helps
considerably to further develop HQP and to improve the author�s understanding for large

scale nonlinear programming�

�	

Applications

The optimization software Omuses!HQP has been proving e�ciency in a number of ap

plications� Most important is its incorporation into a real
time process control system
for a large water canal system in Northern Germany� The operational water management
task is to maintain navigable water levels with minimum electrical energy �pump� costs�
Optimal pump and discharge strategies are calculated based on predictions for the oper

ation of the locks
 wind stress
 and natural in�ows
 using a sophisticated process model�
The calculated decision proposals are updated repeatedly during a day within a receding
horizon or model
based predictive control scheme
 see e�g� �Linke et al�
 ����� and �Arnold
et al�
 ���	��

An other interesting application is the planning and management of water reservoir sys

tems due to expected climate changes �CHEWS
 ���	�
 �Fritsch et al�
 ���	��

The integration of Omuses with the object
oriented continuous systems modeling and
simulation environment OmSim allows the e�cient application to complex dynamical
sytem models� The modeling tool is used for the automated compilation of system models
that are imported by Omuses afterwards� Examples are studies to the optimal design of a
solar heating system with ground heat store �Franke and Hellstr�om
 ����� and the optimal
control of a waste water treatment plant �Reichl
 ���	�
 �Reichl et al�
 ���	��

The development of Omuses within the PhD thesis project �Franke
 ���	� was driven by
the requirements of its applications� We hope that the release under the GNU Library
General Public License �LGPL� will allow both� more interesting solutions to optimization
problems and further developments of the solution procedures�

Acknoledgements

The projects
 this software has mainly been developed for
 were supported by the
Deutsche Bundesstiftung Umwelt
 Osnabr�uck �grant ����!����
 Deutsche Bundesanstalt
f�ur Wasserbau
 Karlsruhe �project �Optimierte Wasserbewirtschaftung des Mittelland

kanals und des Elbe
Seiten
Kanals �
 and the Th�uringer Ministerium f�ur Wissenschaft�

Forschung und Kultur
 Erfurt �project �VakuSol ��

��

Bibliography

Arnold
 E� ���	��� Zur optimalen Steuerung zeitdiskreter dynamischer Prozesse mittels
nichtlinearer Optimierung mit Anwendungen auf die Klimasteuerung von Gew�achs�
h�ausern� PhD thesis
 Technical University of Ilmenau�

Arnold
 E� �����
���� Numerische L�osung von Optimalsteuerungsaufgaben� Praktikums

anleitung �in German�
 Technical University of Ilmenau�

Arnold
 E�
 Linke
 H�
 and Franke
 R� ����	�� Optimal control application for operational
water management of a canal system� In Koussoulas
 N� and Groumpos
 P�
 editors
 �th
IFAC Symposium on Large Scale Systems LSS
��
 volume II
 pages 	���	��
 Patras

Greece�

Arnold
 E�
 Tatjewski
 P�
 and Wo%lochowicz
 P� ������� Two methods for large
scale non

linear optimization and their comparison on a case study of hydropower optimization�
J� Optim� Theory and Applics�
 	�����������	�

Betts
 J� and Frank
 P� ������� A sparse nonlinear optimization algorithm� J� Optim� The�
ory and Applics�
 	�������������

Bongartz
 I�
 Conn
 A�
 Gould
 N�
 and Toint
 P� ������� CUTE� Constrained and uncon

strained testing environment� ACM TOMS
 ��������������

Bunch
 J� R�
 Kaufman
 L�
 and Parlett
 B� N� ������� Decomposition of a symmetric
matrix� Numerical Mathematics
 ����������

Chamberlain
 R�
 Powell
 M�
 Lemarechal
 C�
 and Pedersen
 H� ���	��� The watchdog
technique for forcing convergence in algorithms for constrained optimization� Mathe�
matical Programming Study
 ��������

CHEWS ����	�� CHEWS
 The impact of climate change and other hydrological events
on European water supply planning and management� Final report ENV�
CT��
���	

European Commission
 DG XII�

Clarke
 D�
 editor ������� Advances in Model�Based Predictive Control� Oxford Science
Publications� Oxford University Press�

Conn
 A�
 Gould
 N�
 and Toint
 P� ������� LANCELOT � A Fortran Package for Large�
Scale Nonlinear Optimization �Release A�� Number �� in Springer Series in Computa

tional Mathematics� Springer
Verlag
 Berlin�

��

Du�
 I� S�
 Erisman
 A� M�
 and Reid
 J� K� ������� Direct methods for sparse matrices�
Oxford University Press
 �rd edition�

Fletcher
 R� ������� An optimal positive de�nite update for sparse Hessian matrices�
SIAM J� Optimization
 �����������	�

Fourer
 R�
 Gay
 D�
 and Kernighan
 B� ������� AMPL� A Modeling Language for Math�
ematical Programming� Boyd & Fraser Publishing Company
 Danvers
 Massachusetts�

Franke
 R� �����a�� Anwendung von Interior
Point
Methoden zur L�osung zeitdiskreter
Optimalsteuerungsprobleme� Diploma Thesis ������ D��� �in German�
 Technical
University of Ilmenau�

Franke
 R� �����b�� User shell design with components for Tcl and Tk� In �nd Tcl�Tk
Workshop
 pages �����	�
 New Orleans
 Louisiana�

Franke
 R� ������� Internet enabled HQP optimization service � software demonstration�
In �nd IEEE European Workshop on Computer Intensive Methods in Control and Signal
Processing
 pages �������
 Prague
 Czech Republik�

Franke
 R� ������� Object
oriented modeling of solar heating systems� Solar Energy

����!��������	��

Franke
 R� ����	�� Integrierte dynamische Modellierung und Optimierung von Systemen
mit saisonaler W�armespeicherung
 volume ��� of Fortschritt�Berichte VDI� Reihe � �in
German�� VDI
Verlag
 D�usseldorf�

Franke
 R� and Arnold
 E� ������� On the integration of a large
scale nonlinear opti

mization tool with open modeling and simulation environments for dynamic systems�
In Javor
 A�
 Lehmann
 A�
 and Molnar
 I�
 editors
 ��th European Simulation Mul�
ticonference
 Budapest
 Hungary� The Society for Computer Simulation International
�SCS��

Franke
 R� and Arnold
 E� ������� Applying new numerical algorithms to the solution
of discrete
time optimal control problems� In Warwick
 K� and K'arn'y
 M�
 editors

Computer�Intensive Methods in Control and Signal Processing� The Curse of Dimen�
sionality
 pages ������	� Birkh�auser Verlag
 Basel�

Franke
 R� and Hellstr�om
 G� ������� Optimization of solar heating systems with sea

sonal storage in the ground� In Megastock
��� �th Int� Conference on Thermal Energy
Storage
 volume �
 pages �������
 Sapporo
 Japan�

Fritsch
 P�
 Hopfgarten
 S�
 and Puta
 H� ����	�� Planning and management of a water
reservoir system due to expected climate changes� In Koussoulas
 N� and Groumpos

P�
 editors
 �th IFAC Symposium on Large Scale Systems LSS
��
 volume II
 pages
	���	��
 Patras
 Greece�

Griewank
 A�
 Juedes
 D�
 and Utke
 J� ������� ADOL
C� A package for the automatic
di�erentiation of algorithms written in C!C��� ACM Transactions on Mathematical
Software
 �������������� Algor� ����

��

Griewank
 A� and Toint
 P� ���	��� Partitioned variable metric updates for large structured
optimization problems� Numerische Mathematik
 �����������

Grupp
 F� ������� Parameteridenti�zierung nichtlinearer mechanischer Deskriptorsysteme
mit Anwendungen in der Rad�Schiene�Dynamik
 volume ��� of Fortschritt�Berichte
VDI� Reihe � �in German�� VDI
Verlag
 D�usseldorf�

Hock
 W� and Schittkowski
 K� ���	��� Test Examples for Nonlinear Programming Codes�
Number �	� in Lecture Notes in Economics and Mathematical Systems� Springer

Verlag
 Berlin�

Linke
 H�
 Arnold
 E�
 and Franke
 R� ������� Optimal water management of a canal
system� In Refsgaard
 J� and Karalis
 E�
 editors
 Operational Water Management

pages ������	� Balkema
 Rotterdam�

Maly
 T� and Petzold
 L� ������� Numerical methods and software for sensitivity analysis
of di�erential
algebraic systems� Applied Numerical Mathematics
 ���������

Mattsson
 S�
 Andersson
 M�
 and (Astr�om
 K� ������� Object
oriented modeling and
simulation� In Linkens
 D� A�
 editor
 CAD for Control Systems
 pages ������ Marcel
Dekker
 Inc�

Mattsson
 S� and S�oderlind
 G� ������� Index reduction in di�erential
algebraic equa

tions using dummy derivatives� SIAM Journal on Scienti�c and Statistical Computing
�SISSC�
 ��������������

Mehrotra
 S� ������� On the implementation of a primal
dual interior point method�
SIAM J� Optimization
 �������������

Monteiro
 R� D� C� and Adler
 I� ���	��� Interior path following primal
dual algorithms�
part �� Convex quadratic programming� Mathematical Programming
 ���������

Ousterhout
 J� K� ������� Tcl and the Tk toolkit� Addison
Wesley
 Reading
 Mas

sachusetts�

Pang
 J�
S� ���	��� Inexact Newton methods for the nonlinear complementarity problem�
Mathematical Programming
 ���������

Pantelides
 C�
 Sargent
 R�
 and Vassiliadis
 V� ������� Optimal control of multistage
systems described by high
index di�erential
algebraic equations� International Series
of Numerical Mathematics
 ������������

Powell
 M� ����	�� A fast algorithm for nonlinearly constrained optimization calculations�
In Watson
 G� A�
 editor
 Proceedings of the Dundee Conference on Numerical Analysis�
����� Springer
Verlag
 Berlin�

Reichl
 G� ����	�� Dynamische Simulation und Optimierung einer Kl�aranlage nach dem
Belebungsverfahren� Diploma Thesis ������ D���� �in German�
 Technical University
of Ilmenau�

��

Reichl
 G�
 Franke
 R�
 and Puta
 H� ����	�� Object
oriented modeling
 simulation and
optimization of a waste water treatment plant� In Proceedings ESS
��� European Sim�
ulation Symposium
 Nottingham
 Great Britain�

Reinisch
 K� ���	��� Systemanalyse und Steuerung komplexer Prozesse� Probleme

L�osungswege
 industrielle und nichtindustrielle Anwendungen� MSR
 ��������������
�Plenary presentation at the ��� International Scienti�c Colloquium at TH Ilmenau

IWK�	���

Schittkowski
 K� ���	��� On the convergence of a sequential quadratic programming
method with an augmented Lagrangian line search function� Math� Operationsforschung
u� Statist�� Ser� Optimization
 ��������������

Schittkowski
 K� ���	��� More Test Examples for Nonlinear Programming Codes� Number
�	� in Lecture Notes in Economics and Mathematical Systems� Springer
Verlag
 Berlin�

Steinbach
 M� ������� Fast Recursive SQP Methods for Large�Scale Optimal Control
Problems� PhD thesis
 University of Heidelberg
 Germany�

Steward
 D� E� and Leyk
 Z� ������� Meschach� Matrix Computations in C
 volume �� of
The Centre for Mathematics and its Application� The Australian National University�

Tone
 K� ���	��� Revisions of constraint approximations in the successive QP method for
nonlinear programming problems� Mathematical Programming
 �����������

Wright
 S� ������� Primal�Dual Interior�Point Methods� SIAM�

Wright
 S� J� ������� Interior point methods for optimal control of discrete time systems�
J� Optim� Theory and Applics�
 �����������	��

��

Appendix A

Interface Elements

Table A�� shows the prepositions used to distinguish between several modules�

Table A��� Prepositions for names of interface elements and Tcl procedures

Preposition Addressed module or library
prg program to solve
sqp SQP solver
qp QP solver
mat matrix solver
omu Omuses library
hqp HQP library
m Meschach library

It is important to access interface elements for solver con�guration in the right order�
A module must be selected before modifying its local settings� To choose
 for instance

Powell�s SQP algorithmwith Mehrotras QP algorithm and block
wise matrix factorization
for a multistage problem
 one has to specify exactly in this order�

sqp�solver Powell

sqp�qp�solver Mehrotra

qp�mat�solver LQDOCP

�see also the access paths in Figure ��� on page ���

��

A�� Omuses interface elements

The following interface elements are introduced by Omuses�

Name Type Explanation

prg name Module the programming problem to treat
 i�e� an im

plementation of Omu Program

prg K Int number of stages �default� ��

prg KK Int number of sample periods �default� ��

prg ts FloatVec vector of sample time points �default� �����T �

prg ks IntVec index vector into ts to determine communica

tion time points �default� ���T �

prg nxs IntVec number of optimization variables that repre

sent states per stage

prg nus IntVec number of optimization variables that repre

sent controls per stage

prg fscale Float scaling factor for the objective function �de

fault� ����

prg ad Bool use of automatic di�erentiation for the calcula

tion of Jacobians and sensitivity matrices �de

fault� ��

prg integrator Module RKsuite � variable stepsize method

RK� � �xed stepsize method

�default� RKsuite
 method ��

prg int rtol Float relative integration error for variable stepsize
methods �default� �e
��

prg int atol Float absolute integration error for variable stepsize
methods �default� �e
���

prg res evals Int total number of residuum evaluations
 that is
calls to continuous��

prg setup stages Method setup the stages of the optimization problem �
may be called before prg setup � �see subsec

tion ����� and example CranePar
 subsection
������

prg simulate Method perform an initial
value simulation and store
the results in the vector of optimization vari

ables � may be called after prg setup � �see
subsection ����� and example Crane
 subsec

tion ������

omu version String contains �X�Y
 with X and Y are the major
and the minor version numbers
 respectively

��

A�� CUTE interface elements

An interface to the Constrained and Unconstrained Testing Environment �CUTE� is part
of the HQP library� The optimization problem under consideration can be con�gured
with�

Name Type Explanation

prg name Module The program to solve
 i�e� an implementation
of Hqp SqpProgram� Available modules are�

CUTE � a program formulated in the standard
input format SIF

CUTE ST � a program formulated in the stan

dard input format SIF
 which may be
stretched by the introduction of dummy
variables in order to allow partitioned
BFGS update

prg stretch Bool � only available with CUTE ST � stretch a pro

gram by introducing dummy variables �de

fault� ��

prg hela init Bool initialize the sparsity structure and starting
values for the Lagrangian Hessian during the
problem setup �default� ��

prg hela Bool use the analytical Lagrangian Hessian
 as pro

vided with the problem �default� ��

prg write soln Command Write the solution �le� The option �nosoln

exhibits the output of variable values� An op

tional argument string is written on the top of
the �le �e�g� the solver return status��

��

A�� HQP solver interface elements

A���� Solver con
guration

Interface elements for solver parameters are�

Name Type Explanation

sqp solver Module SQP algorithm� available solvers are�

Powell � Powell�s algorithm

Schittkowski � Schittkowski�s algorithm

�default� Powell�

sqp eps Float limit for the stopping criterion �default� �e
��

sqp max iters Int limit for the iteration counter �default� ���

overwritten to ���� for CUTE�

sqp max inf iters Int maximal accepted number of infeasible itera

tions �default� ���

sqp min alpha Float lower limit for the step length �default� �e
���

sqp watchdog start Int � only available with Powell � iteration to
start with watchdog algorithm �default� ���

sqp watchdog credit Int � only available with Powell � number of
�bad iterations until backtracking and regular
step are performed �default� �
 i�e� watchdog
is disabled�

sqp watchdog logging Bool write watchdog log to stdout �default� ��

sqp hela Module Method for the Lagrangian Hessian approxi

mation� Available modules are�

BFGS � partitioned BFGS update with Pow

ell�s damping

DScale � numerical approximation with a di

agonal matrix

Gerschgorin � modi�cation of a user

provided Lagrangian Hessian for
positive de�niteness according �����

�default� BFGS
 overwritten to DScale for
CUTE�

sqp hela scale Bool initialize Hessian with diagonal matrix based
on �nite di�erences at starting point �else ini

tialize with identity matrix� �default� ��

sqp hela eps Float 	 in ����� �default� �e
	�

��

sqp hela eigen control Bool � only available with BFGS � control of posi

tiv de�nite Hessian blocks based on eigenval

ues �default� ��

sqp qp solver Module the QP solver to use� available solvers are�

Mehrotra � Mehrotra�s algorithm

Franke � original HQP algorithm

�default� Franke�

qp eps Float limit for the stopping criterion �default� �e

���

qp max iters Int limit for the iteration counter �default� ���

overwritten to ��� for CUTE�

qp mat solver Module the used matrix solver� available are�

SpBKP � solution of the system ������

RedSpBKP � solution of the reduced system
������

SpSC � sparce Schur complement method

LQDOCP � block
wise solution of multistage
problems

�default� RedSpBKP�

A���� Retrieving variable values and controlling execution

Interface elements for retrieving variable values are�

Name Type Explanation

prg f Float objective value f

prg x FloatVec vector x of variables

sqp y FloatVec vector y of Lagrange multipliers

sqp z FloatVec vector z of Lagrange multipliers

sqp iter Int iteration counter

sqp inf iters Int number of infeasible iterations

sqp alpha Float step length determined by line
search

sqp norm s Float maximum norm of the current solution of the
quadratic subproblem

sqp norm inf Float maximal violation of a constraint

sqp norm grd L Float maximum norm of the gradient of the La

grangian

�	

sqp sQs Float the product sTQs

sqp xQx Float the product xTQx

qp iter Int iteration counter

qp result String subproblem optimization result� possible val

ues are�

optimal � Constraints and the optimality cri

terion
 i�e� zTw � 	
 are ful�lled�

suboptimal � Constraints are violated
 but
the solver can�t �nd a better solution �see
the discussion in the text��

degenerate � The problem can not be solved
numerically
 which may happen
 e�g�
 for
linearly dependent equality constraints�

feasible � Constraints are ful�lled
 but not
the optimality criterion�

infeasible Constraints are violated�

The results feasible and infeasible are
only returned
 if the iteration counter limit is
reached�

mat sbw Int the semibandwidth of the RCM
ordered coef

�cient matrix in ������ or ������

The QP result �suboptimal� was introduced
 because linear approximations of nonlinear
constraints may give a quadratic subproblem without feasible solution
 even though a
solution of the nonlinear problem exists� The currently implemented SQP solvers perform
those infeasible steps
 until the limit sqp max inf iters is reached� From none of the
results can be concluded that the nonlinear problem has no solution�

Interface elements for controlling the solution process are�

Name Type Explanation

prg setup Command allocate data structures for a program and ini

tialize variable values

sqp init Command initialize the solver

sqp qp update Command approximate a subproblem for the current it

erate xk

sqp qp solve Command solve the subproblem

sqp step Command perform a step based on the solution of the
subproblem

prg qp dump Command The current quadratic subproblem is written
to a �le� An argument is taken for the �le
name�

��

Further interface elements are�

Name Type Explanation

m version Command print a summary of the Meschach library ver

sion and modi�cations to stdout

hqp version String contains �X�Y
 with X and Y are the major
and the minor version numbers
 respectively

A�� Tcl procedures

The following Tcl procedures are provided with the CUTE interface to HQP in the �le
hqp cute�tcl�

Name Type Explanation

hqp config Procedure Con�gure HQP for the solution of a speci�c
problem�

hqp options Procedure Read the environment variable HQP OPTIONS

that is supposed to contain a list of the form
�in EBNF��

name�value��name�value��

Apply and report user
speci�ed settings�

hqp exit Procedure Write the solution �le and exit HQP �see also
the hqp exit provided with the HQP library��

The following Tcl procedures are provided with the the HQP library in the �le hqp�tcl�

Name Type Explanation

hqp solve Procedure Solve a problem and generate a short output
on the solution process�

hqp exit Procedure Exit HQP� This procedure is evaluated in the
events of successful termination or a received
signal interrupt �kill ��
 � C�� The procedure
may be overwritten to perform something be

fore termination�

��

The following Tcl procedures are provided with the the Omuses demo collection in the
�le omu�tcl�

Name Type Explanation

omu k times Procedure generate a vector of start!end times of all
stages

omu read plt Procedure read an OmSim
like data �le into the global
array data

omu write plt Procedure write current prg x into an OmSim
like data
�le �this procedure only works for a constant
number of variables per stage�

omu plot Procedure plot results into a BLT graph �this procedure
only works for a constant number of variables
per stage�

��

Appendix B

Omuses examples

��

B�� Implementations of TP��� and TP���omu

�include �Prg�TP	�	�h�

�include �If�Class�h�

�� propagate the class to the command interface

IF�CLASS�DEFINE��TP	�	�� Prg�TP	�	� Omu�Program��

��

static double a�� � �

���
������ �	
���� �	
���� �	
����� ������� �		����� �		����

������� ������� �		���� �������� �	������ 	�
�
�� �
���	�

��

static double c�� � �

��
��	
� ���	�	
� ���
�
�� �������� ���
��
� �������� ���	����

	������� ���
��
� �����
�� ������
� 	������� ���	���� ����	��

��

��

void Prg�TP	�	��setup�int k� Omu�Vector �x� Omu�Vector �u� Omu�Vector �cns�

�

�� allocate optimization variables

x�alloc��
��

�� bounds on variables and initial values

for �int i � �� i � �� i

� �

x�min�i� � ����

x�max�i� � ���
�

x�initial�i� � �����

�

for �int i � �� i � �
� i

� �

x�min�i� � ����

x�max�i� � ���	�

x�initial�i� � �����

�

�� one equality constraint

cns�alloc����

cns�min��� � cns�max��� � ����

�

��

void Prg�TP	�	��update�int kk� const adoublev �x� const adoublev �u�

adoublev �f� adouble �f�� adoublev �cns�

�

for �int i � �� i � �
� i

� �

f�
� ��a�i� � x�i��

cns���
� ��c�i� x�i��

�

�

��

�include �Prg�TP	�	omu�h�

IF�CLASS�DEFINE��TP	�	omu�� Prg�TP	�	omu� Omu�Program��

��

void Prg�TP	�	omu��setup�stages�IVECP ks� VECP ts�

�

�� initialize ks and ts and set �K � �KK � �

stages�alloc�ks� ts� �
� ���

�

��

void Prg�TP	�	omu��setup�int k� Omu�Vector �x� Omu�Vector �u� Omu�Vector ��

�

�� allocate optimization variables

x�alloc����

if �k � �K�

u�alloc����

�� bounds on variables and initial values

if �k � �� �

u�min��� � ����

u�max��� � ���
�

u�initial��� � �����

�

else if �k � �K� �

u�min��� � ����

u�max��� � ���	�

u�initial��� � �����

�

�� initial and final state constraints

if �k �� �� �

x�min��� � x�max��� � ���� �� s!�

x�initial��� � ����

�

else if �k �� �K� �

x�min��� � x�max��� � ���� �� s!K

�

�

��

void Prg�TP	�	omu��update�int kk� const adoublev �x� const adoublev �u�

adoublev �f� adouble �f�� adoublev ��

�

if �kk � �KK� �

f� � ��a�kk� � u����

f��� � x���
 ��c�kk� u����

�

�

��

B�� Container crane

B���� Omola code for the model

Crane isa Model with

u isa ControlInput with control�default �� ����� end�

Fscale isa Parameter with default �� ������� end� " �N�

ml isa Parameter with default ��
������ end� " �kg�

md isa Parameter with default �� ������� end� " �kg�

g isa Parameter with default �� ����� end� " �m�s��

l isa Parameter with default �� ����� end� " �m�

s� v� phi� omega isa Variable�

mdl� sinphi� den type real�

mdl � md
 ml�

sinphi � sin�phi��

den � md
 ml sinphi!��

s� � v�

v� � ���� ml g sin�� phi�

 ml l omega!� sinphi

 u Fscale� � den�

phi� � omega�

omega� � ��mdl g sinphi

� ��� ml l omega!� sin�� phi�

� u Fscale cos�phi�� � �l den��

end�

B���� Automatically generated C code fragments

�� bound parameters and implicit discrete part

mdl � md
 ml�

�� dynamic model equations

u�control � u����

sinphi � sin�phi��

den � md
 ml pow�sinphi� ���

xp�offs
�� � omega�

xp�offs
�� � ��mdl g sinphi
 ��� ml l pow�omega� �� sin�� phi�

 u�control Fscale cos�phi����l den��

xp�offs
�� � ���� ml g sin�� phi�
 ml l pow�omega� �� sinphi

 u�control Fscale��den�

xp�offs
	� � v�

�� state assignments

phi � x�offs
���

��

omega � x�offs
���

v � x�offs
���

s � x�offs
	��

�� initial state constraints

x�min�offs
�� � x�max�offs
�� � ���� �� phi

x�min�offs
�� � x�max�offs
�� � ���� �� omega

x�min�offs
�� � x�max�offs
�� � ���� �� v

x�min�offs
	� � x�max�offs
	� � ����� �� s

�� initial states

x�initial�offs
�� � ���� �� phi

x�initial�offs
�� � ���� �� omega

x�initial�offs
�� � ���� �� v

x�initial�offs
	� � ����� �� s

�� default values for parameters

Fscale � �������

g � �����

l � �����

md � �������

ml �
������

�� interface elements for unbound variables

�ifList�append�new If�Float��prg�Fscale�� �Fscale���

�ifList�append�new If�Float��prg�g�� �g���

�ifList�append�new If�Float��prg�l�� �l���

�ifList�append�new If�Float��prg�md�� �md���

�ifList�append�new If�Float��prg�ml�� �ml���

�� model inputs and parameters

double Fscale�

double g�

double l�

double md�

double mdl�

double ml�

�� dynamic model variables

adouble den� omega� phi� s� sinphi� u�control� v�

� interface elements for unresolved variables

��

Appendix C

Copyright

Omuses and HQP are free software according to the conditions of the GNU LIBRARY
GENERAL PUBLIC LICENSE �LGPL�
 Version � �see below��

Following contributions with partly di�erent copyrights are included�

Meschach �
matrix library by D�E� Steward and Z� Leyk �version ���b�

ADOL�C �
automatic di�erentiation by A� Griewank et al �version ����

Mehrotra �
Mehrotra�s interior point algorithm implemented by E� Arnold

LQDOCP �
block
oriented matrix solver by E� Arnold

SpSC �
sparse Schur complement matrix solver by H� Linke

OdeTs �
ODE integration using ADOL
C by H� Linke

RKsuite �
ODE integration by R�W� Brankin et al �release ����

qsort �
quick sort routine from NetBSD

gmalloc �
GNU malloc routines

��

Meschach

Copyright�C� David E� Stewart and Zbigniew Leyk
 ��	�
����� All rights reserved�

Meschach is provided �as is� without any express or implied warranty of
any kind with respect to this software� In particular the authors shall
not be liable for any direct� indirect� special� incidental or consequen�
tial damages arising in any way from use of the software�

NetBSD

Copyright �c� ����
 ���� The Regents of the University of California� All rights reserved�

Redistribution and use in source and binary forms
 with or without modi�cation
 are
permitted provided that the following conditions are met�

�� Redistributions of source code must retain the above copyright notice
 this list of
conditions and the following disclaimer�

�� Redistributions in binary form must reproduce the above copyright notice
 this
list of conditions and the following disclaimer in the documentation and!or other
materials provided with the distribution�

�� All advertising materials mentioning features or use of this software must display
the following acknowledgement� This product includes software developed by the
University of California
 Berkeley and its contributors�

�� Neither the name of the University nor the names of its contributors may be used
to endorse or promote products derived from this software without speci�c prior
written permission�

This software is provided by the regents and contributors �as is� and
any express or implied warranties� including� but not limited to� the im�
plied warranties of merchantability and fitness for a particular purpose
are disclaimed� in no event shall the regents or contributors be liable
for any direct� indirect� incidental� special� exemplary� or consequential
damages �including� but not limited to� procurement of substitute goods
or services� loss of use� data� or profits� or business interruption� how�
ever caused and on any theory of liability� whether in contract� strict
liability� or tort �including negligence or otherwise� arising in any way
out of the use of this software� even if advised of the possibility of such
damage�

�	

Omuses and HQP

GNU LIBRARY GENERAL PUBLIC LICENSE

Version �
 June ����

Copyright �C� ���� Free Software Foundation
 Inc� �� Temple Place
 Suite ���
 Boston

MA �����
���� USA

Everyone is permitted to copy and distribute verbatim copies of this license document

but changing it is not allowed�

�This is the �rst released version of the library GPL� It is numbered � because it goes
with version � of the ordinary GPL��

Preamble

The licenses for most software are designed to take away your freedom to share and change
it� By contrast
 the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software�to make sure the software is free for all its users�

This license
 the Library General Public License
 applies to some specially designated Free
Software Foundation software
 and to any other libraries whose authors decide to use it�
You can use it for your libraries
 too�

When we speak of free software
 we are referring to freedom
 not price� Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software �and charge for this service if you wish�
 that you receive source code or
can get it if you want it
 that you can change the software or use pieces of it in new free
programs� and that you know you can do these things�

To protect your rights
 we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights� These restrictions translate to certain
responsibilities for you if you distribute copies of the library
 or if you modify it�

For example
 if you distribute copies of the library
 whether gratis or for a fee
 you must
give the recipients all the rights that we gave you� You must make sure that they
 too

receive or can get the source code� If you link a program with the library
 you must provide
complete object �les to the recipients so that they can relink them with the library
 after
making changes to the library and recompiling it� And you must show them these terms
so they know their rights�

Our method of protecting your rights has two steps� ��� copyright the library
 and ���
o�er you this license which gives you legal permission to copy
 distribute and!or modify
the library�

Also
 for each distributor�s protection
 we want to make certain that everyone understands
that there is no warranty for this free library� If the library is modi�ed by someone else
and passed on
 we want its recipients to know that what they have is not the original
version
 so that any problems introduced by others will not re�ect on the original authors�
reputations�

��

Finally
 any free program is threatened constantly by software patents� We wish to
avoid the danger that companies distributing free software will individually obtain patent
licenses
 thus in e�ect transforming the program into proprietary software� To prevent
this
 we have made it clear that any patent must be licensed for everyone�s free use or not
licensed at all�

Most GNU software
 including some libraries
 is covered by the ordinary GNU General
Public License
 which was designed for utility programs� This license
 the GNU Library
General Public License
 applies to certain designated libraries� This license is quite dif

ferent from the ordinary one� be sure to read it in full
 and don�t assume that anything
in it is the same as in the ordinary license�

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it� Linking a program with a library
 without changing the library
 is in some sense
simply using the library
 and is analogous to running a utility program or application
program� However
 in a textual and legal sense
 the linked executable is a combined
work
 a derivative of the original library
 and the ordinary General Public License treats
it as such�

Because of this blurred distinction
 using the ordinary General Public License for libraries
did not e�ectively promote software sharing
 because most developers did not use the
libraries� We concluded that weaker conditions might promote sharing better�

However
 unrestricted linking of non
free programs would deprive the users of those pro

grams of all bene�t from the free status of the libraries themselves� This Library General
Public License is intended to permit developers of non
free programs to use free libraries

while preserving your freedom as a user of such programs to change the free libraries that
are incorporated in them� �We have not seen how to achieve this as regards changes in
header �les
 but we have achieved it as regards changes in the actual functions of the
Library�� The hope is that this will lead to faster development of free libraries�

The precise terms and conditions for copying
 distribution and modi�cation follow� Pay
close attention to the di�erence between a work based on the library and a work that
uses the library � The former contains code derived from the library
 while the latter only
works together with the library�

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one�

TERMS AND CONDITIONS FOR COPYING� DISTRIBUTION AND

MODIFICATION

�� This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License �also called this License �� Each licensee is
addressed as you �

A library means a collection of software functions and!or data prepared so as to be
conveniently linked with application programs �which use some of those functions and
data� to form executables�

��

The Library
 below
 refers to any such software library or work which has been dis

tributed under these terms� A work based on the Library means either the Library or
any derivative work under copyright law� that is to say
 a work containing the Library or
a portion of it
 either verbatim or with modi�cations and!or translated straightforwardly
into another language� �Hereinafter
 translation is included without limitation in the term
 modi�cation ��

 Source code for a work means the preferred form of the work for making modi�cations
to it� For a library
 complete source code means all the source code for all modules it
contains
 plus any associated interface de�nition �les
 plus the scripts used to control
compilation and installation of the library�

Activities other than copying
 distribution and modi�cation are not covered by this Li

cense� they are outside its scope� The act of running a program using the Library is not
restricted
 and output from such a program is covered only if its contents constitute a
work based on the Library �independent of the use of the Library in a tool for writing it��
Whether that is true depends on what the Library does and what the program that uses
the Library does�

�� You may copy and distribute verbatim copies of the Library�s complete source code as
you receive it
 in any medium
 provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty� keep intact all
the notices that refer to this License and to the absence of any warranty� and distribute
a copy of this License along with the Library�

You may charge a fee for the physical act of transferring a copy
 and you may at your
option o�er warranty protection in exchange for a fee�

�� You may modify your copy or copies of the Library or any portion of it
 thus forming
a work based on the Library
 and copy and distribute such modi�cations or work under
the terms of Section � above
 provided that you also meet all of these conditions�

a� The modi�ed work must itself be a software library�

b� You must cause the �les modi�ed to carry prominent notices stating that you changed
the �les and the date of any change�

c� You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License�

d� If a facility in the modi�ed Library refers to a function or a table of data to be supplied
by an application program that uses the facility
 other than as an argument passed when
the facility is invoked
 then you must make a good faith e�ort to ensure that
 in the
event an application does not supply such function or table
 the facility still operates
 and
performs whatever part of its purpose remains meaningful�

�For example
 a function in a library to compute square roots has a purpose that is
entirely well
de�ned independent of the application� Therefore
 Subsection �d requires
that any application
supplied function or table used by this function must be optional�
if the application does not supply it
 the square root function must still compute square
roots��

These requirements apply to the modi�ed work as a whole� If identi�able sections of that
work are not derived from the Library
 and can be reasonably considered independent

��

and separate works in themselves
 then this License
 and its terms
 do not apply to those
sections when you distribute them as separate works� But when you distribute the same
sections as part of a whole which is a work based on the Library
 the distribution of the
whole must be on the terms of this License
 whose permissions for other licensees extend
to the entire whole
 and thus to each and every part regardless of who wrote it�

Thus
 it is not the intent of this section to claim rights or contest your rights to work
written entirely by you� rather
 the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library�

In addition
 mere aggregation of another work not based on the Library with the Library
�or with a work based on the Library� on a volume of a storage or distribution medium
does not bring the other work under the scope of this License�

�� You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library� To do this
 you must alter all the notices
that refer to this License
 so that they refer to the ordinary GNU General Public License

version �
 instead of to this License� �If a newer version than version � of the ordinary
GNU General Public License has appeared
 then you can specify that version instead if
you wish�� Do not make any other change in these notices�

Once this change is made in a given copy
 it is irreversible for that copy
 so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy�

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library�

�� You may copy and distribute the Library �or a portion or derivative of it
 under
Section �� in object code or executable form under the terms of Sections � and � above
provided that you accompany it with the complete corresponding machine
readable source
code
 which must be distributed under the terms of Sections � and � above on a medium
customarily used for software interchange�

If distribution of object code is made by o�ering access to copy from a designated place

then o�ering equivalent access to copy the source code from the same place satis�es the
requirement to distribute the source code
 even though third parties are not compelled to
copy the source along with the object code�

�� A program that contains no derivative of any portion of the Library
 but is designed to
work with the Library by being compiled or linked with it
 is called a work that uses the
Library � Such a work
 in isolation
 is not a derivative work of the Library
 and therefore
falls outside the scope of this License�

However
 linking a work that uses the Library with the Library creates an executable
that is a derivative of the Library �because it contains portions of the Library�
 rather
than a work that uses the library � The executable is therefore covered by this License�
Section � states terms for distribution of such executables�

When a work that uses the Library uses material from a header �le that is part of the
Library
 the object code for the work may be a derivative work of the Library even though
the source code is not� Whether this is true is especially signi�cant if the work can be
linked without the Library
 or if the work is itself a library� The threshold for this to be
true is not precisely de�ned by law�

��

If such an object �le uses only numerical parameters
 data structure layouts and accessors

and small macros and small inline functions �ten lines or less in length�
 then the use of the
object �le is unrestricted
 regardless of whether it is legally a derivative work� �Executables
containing this object code plus portions of the Library will still fall under Section ���

Otherwise
 if the work is a derivative of the Library
 you may distribute the object code
for the work under the terms of Section �� Any executables containing that work also fall
under Section �
 whether or not they are linked directly with the Library itself�

�� As an exception to the Sections above
 you may also compile or link a work that
uses the Library with the Library to produce a work containing portions of the Library

and distribute that work under terms of your choice
 provided that the terms permit
modi�cation of the work for the customer�s own use and reverse engineering for debugging
such modi�cations�

You must give prominent notice with each copy of the work that the Library is used in
it and that the Library and its use are covered by this License� You must supply a copy
of this License� If the work during execution displays copyright notices
 you must include
the copyright notice for the Library among them
 as well as a reference directing the user
to the copy of this License� Also
 you must do one of these things�

a� Accompany the work with the complete corresponding machine
readable source code for
the Library including whatever changes were used in the work �which must be distributed
under Sections � and � above�� and
 if the work is an executable linked with the Library

with the complete machine
readable work that uses the Library
 as object code and!or
source code
 so that the user can modify the Library and then relink to produce a modi�ed
executable containing the modi�ed Library� �It is understood that the user who changes
the contents of de�nitions �les in the Library will not necessarily be able to recompile the
application to use the modi�ed de�nitions��

b� Accompany the work with a written o�er
 valid for at least three years
 to give the
same user the materials speci�ed in Subsection �a
 above
 for a charge no more than the
cost of performing this distribution�

c� If distribution of the work is made by o�ering access to copy from a designated place

o�er equivalent access to copy the above speci�ed materials from the same place�

d� Verify that the user has already received a copy of these materials or that you have
already sent this user a copy�

For an executable
 the required form of the work that uses the Library must include any
data and utility programs needed for reproducing the executable from it� However
 as a
special exception
 the source code distributed need not include anything that is normally
distributed �in either source or binary form� with the major components �compiler
 kernel

and so on� of the operating system on which the executable runs
 unless that component
itself accompanies the executable�

It may happen that this requirement contradicts the license restrictions of other propri

etary libraries that do not normally accompany the operating system� Such a contradic

tion means you cannot use both them and the Library together in an executable that you
distribute�

�� You may place library facilities that are a work based on the Library side
by
side
in a single library together with other library facilities not covered by this License
 and

��

distribute such a combined library
 provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted
 and provided
that you do these two things�

a� Accompany the combined library with a copy of the same work based on the Library

uncombined with any other library facilities� This must be distributed under the terms
of the Sections above�

b� Give prominent notice with the combined library of the fact that part of it is a work
based on the Library
 and explaining where to �nd the accompanying uncombined form
of the same work�

	� You may not copy
 modify
 sublicense
 link with
 or distribute the Library except as
expressly provided under this License� Any attempt otherwise to copy
 modify
 sublicense

link with
 or distribute the Library is void
 and will automatically terminate your rights
under this License� However
 parties who have received copies
 or rights
 from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance�

�� You are not required to accept this License
 since you have not signed it� However

nothing else grants you permission to modify or distribute the Library or its derivative
works� These actions are prohibited by law if you do not accept this License� Therefore

by modifying or distributing the Library �or any work based on the Library�
 you indicate
your acceptance of this License to do so
 and all its terms and conditions for copying

distributing or modifying the Library or works based on it�

��� Each time you redistribute the Library �or any work based on the Library�
 the
recipient automatically receives a license from the original licensor to copy
 distribute

link with or modify the Library subject to these terms and conditions� You may not
impose any further restrictions on the recipients� exercise of the rights granted herein�
You are not responsible for enforcing compliance by third parties to this License�

��� If
 as a consequence of a court judgment or allegation of patent infringement or for
any other reason �not limited to patent issues�
 conditions are imposed on you �whether
by court order
 agreement or otherwise� that contradict the conditions of this License

they do not excuse you from the conditions of this License� If you cannot distribute so
as to satisfy simultaneously your obligations under this License and any other pertinent
obligations
 then as a consequence you may not distribute the Library at all� For example

if a patent license would not permit royalty
free redistribution of the Library by all those
who receive copies directly or indirectly through you
 then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Library�

If any portion of this section is held invalid or unenforceable under any particular cir

cumstance
 the balance of the section is intended to apply
 and the section as a whole is
intended to apply in other circumstances�

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims� this section has the sole purpose
of protecting the integrity of the free software distribution system which is implemented
by public license practices� Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of

��

that system� it is up to the author!donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice�

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License�

��� If the distribution and!or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces
 the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries
 so that distribution is permitted only in or among countries not thus
excluded� In such case
 this License incorporates the limitation as if written in the body
of this License�

��� The Free Software Foundation may publish revised and!or new versions of the Library
General Public License from time to time� Such new versions will be similar in spirit to
the present version
 but may di�er in detail to address new problems or concerns�

Each version is given a distinguishing version number� If the Library speci�es a version
number of this License which applies to it and any later version
 you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation� If the Library does not specify a license version number

you may choose any version ever published by the Free Software Foundation�

��� If you wish to incorporate parts of the Library into other free programs whose distri

bution conditions are incompatible with these
 write to the author to ask for permission�
For software which is copyrighted by the Free Software Foundation
 write to the Free
Software Foundation� we sometimes make exceptions for this� Our decision will be guided
by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally�

NO WARRANTY

��� BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE
 THERE IS NO
WARRANTY FOR THE LIBRARY
 TO THE EXTENT PERMITTED BY APPLICA

BLE LAW� EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND!OR OTHER PARTIES PROVIDE THE LIBRARY AS IS WITH

OUT WARRANTY OF ANY KIND
 EITHER EXPRESSED OR IMPLIED
 INCLUD

ING
 BUT NOT LIMITED TO
 THE IMPLIED WARRANTIES OF MERCHANTABIL

ITY AND FITNESS FOR A PARTICULAR PURPOSE� THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU� SHOULD
THE LIBRARY PROVE DEFECTIVE
 YOU ASSUME THE COST OF ALL NECES

SARY SERVICING
 REPAIR OR CORRECTION�

��� IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER
 OR ANY OTHER PARTY WHO
MAYMODIFY AND!OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE

BE LIABLE TO YOU FOR DAMAGES
 INCLUDING ANY GENERAL
 SPECIAL

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY �INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE
WITH ANY OTHER SOFTWARE�
 EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES�

��

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library
 and you want it to be of the greatest possible use to the
public
 we recommend making it free software that everyone can redistribute and change�
You can do so by permitting redistribution under these terms �or
 alternatively
 under the
terms of the ordinary General Public License��

To apply these terms
 attach the following notices to the library� It is safest to attach
them to the start of each source �le to most e�ectively convey the exclusion of warranty�
and each �le should have at least the copyright line and a pointer to where the full
notice is found�

�one line to give the library�s name and a brief idea of what it does��
Copyright �C� �year� �name of author�

This library is free software� you can redistribute it and!or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation�
either version � of the License
 or �at your option� any later version�

This library is distributed in the hope that it will be useful
 but WITHOUT ANY WAR

RANTY� without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE� See the GNU Library General Public License for more de

tails�

You should have received a copy of the GNU Library General Public License along with
this library� if not
 write to the Free Foundation
 Inc�
 �� Temple Place
 Suite ���
 Boston

MA �����
���� USA

Also add information on how to contact you by electronic and paper mail�

You should also get your employer �if you work as a programmer� or your school
 if any

to sign a copyright disclaimer for the library
 if necessary� Here is a sample� alter the
names�

Yoyodyne
 Inc�
 hereby disclaims all copyright interest in the library �Frob� �a library for
tweaking knobs� written by James Random Hacker�

�signature of Ty Coon�
 � April ����
Ty Coon
 President of Vice

That�s all there is to it"

��

