HQP  1.9.6
Prg_SFunctionEst Class Reference

Estimation of parameters and initial states for a model given as MEX S-function. More...

#include <Prg_SFunctionEst.h>

Inheritance diagram for Prg_SFunctionEst:
[legend]

Public Member Functions

 Prg_SFunctionEst ()
 constructor
 
 ~Prg_SFunctionEst ()
 destructor
 
const char * name ()
 name SFunctionEst
 
Access methods for program specific members (If prefix: prg_)
int nex () const
 number of experiments used for estimation
 
void set_nex (int val)
 set number of experiments
 
int multistage () const
 indicate if problem is treated with one stage per time interval
 
void set_multistage (int val)
 set multistage flag
 
const MATP ys_ref () const
 reference values for active model outputs (size: KK+1 . ny)
 
void set_ys_ref (const MATP val)
 set reference outputs
 
const MATP M () const
 measurement matrix M=dy/d(p,x0) (size: (KK+1)*ny . np+nx0)
 
const MATP P () const
 precision matrix P=(M^TM)^(-1) (size: np+nx0 . np+nx0)
 
const MATP COV () const
 covariance matrix (size: np+nx0 . np+nx0)
 
Read methods for model specific members (no If prefix).

Note that the prefix mdl_ is omitted in the detailed mathematical problem description.

const VECP mdl_p () const
 model parameters
 
const VECP mdl_p_min () const
 lower bounds for model parameters (note: default is 0)
 
const VECP mdl_p_max () const
 upper bounds for model parameters
 
const IVECP mdl_p_active () const
 indicate estimated parameters
 
const VECP mdl_p_confidence () const
 confidence intervals of estimated parameters
 
const VECP mdl_p_nominal () const
 nominal parameter values (for scaling)
 
const VECP mdl_x0 () const
 model initial states (read only, note: write initial states of experiments via mdl_x0s)
 
const VECP mdl_x0_min () const
 lower bounds for initial states
 
const VECP mdl_x0_max () const
 upper bounds for initial states
 
const IVECP mdl_x0_active () const
 indicate estimated initial states
 
const VECP mdl_x0_confidence () const
 confidence intervals of estimated initial states, averaged over multiple experiments
 
const VECP mdl_der_x0_min () const
 minimum for time derivative of x0
 
const VECP mdl_der_x0_max () const
 maximum for time derivative of x0
 
const VECP mdl_x_nominal () const
 nominal state values (for scaling) More...
 
const IVECP mdl_u_order () const
 
const VECP mdl_x_min () const
 lower bounds on states at stage boundaries (default: -Inf)
 
const VECP mdl_x_max () const
 upper bounds on states at stage boundaries (default: Inf)
 
const IVECP mdl_y_active () const
 indicate measured outputs
 
const VECP mdl_y_nominal () const
 nominal output values (for scaling)
 
const MATP mdl_x0s () const
 initial states for each experiment (size: nex . mdl_nx)
 
const MATP mdl_us () const
 model inputs (size: KK+1 . mdl_nu)
 
const MATP mdl_xs () const
 model states (size: KK+1 . mdl_nx)
 
const MATP mdl_ys () const
 model outputs (read only, size: KK+1 . mdl_ny)
 
Write methods for model specific members (no If prefix).
void set_mdl_p (const VECP v)
 set values of model parameter
 
void set_mdl_p_min (const VECP v)
 set lower bounds for model parameters
 
void set_mdl_p_max (const VECP v)
 set upper bounds for model parameters
 
void set_mdl_p_active (const IVECP v)
 set estimated parameters
 
void set_mdl_p_nominal (const VECP v)
 set nominal parameters
 
void set_mdl_x0_min (const VECP v)
 set lower bounds for initial states
 
void set_mdl_x0_max (const VECP v)
 set upper bounds for initial states
 
void set_mdl_x0_active (const IVECP v)
 set estimated initial states
 
void set_mdl_der_x0_min (const VECP v)
 set minimum for dx0dt
 
void set_mdl_der_x0_max (const VECP v)
 set maximum for dx0dt
 
void set_mdl_x_nominal (const VECP v)
 set nominal states
 
void set_mdl_u_order (const IVECP v)
 set interpolation order for inputs
 
void set_mdl_x_min (const VECP v)
 set lower bounds on states
 
void set_mdl_x_max (const VECP v)
 set upper bounds on states
 
void set_mdl_y_active (const IVECP v)
 set measured outputs
 
void set_mdl_y_nominal (const VECP v)
 set nominal outputs
 
void set_mdl_x0s (const MATP v)
 set initial states
 
void set_mdl_us (const MATP v)
 set model inputs
 
void set_mdl_xs (const MATP v)
 set model states
 
- Public Member Functions inherited from Prg_SFunction
 Prg_SFunction ()
 constructor
 
 ~Prg_SFunction ()
 destructor
 
const char * mdl_name () const
 S-function name.
 
void set_mdl_name (const char *str)
 set S-function name
 
const char * mdl_path () const
 S-function path, including name, used for dynamic loading. More...
 
void set_mdl_path (const char *str)
 set S-function path
 
const char * mdl_args () const
 String representation of S-function arguments.
 
void set_mdl_args (const char *str)
 set S-function arguments
 
const VECP mdl_p () const
 parameters
 
void set_mdl_p (const VECP value)
 set parameters
 
const VECP mdl_x0 () const
 initial states
 
void set_mdl_x0 (const VECP value)
 set initial states
 
- Public Member Functions inherited from Omu_Program
 Omu_Program ()
 constructor
 
virtual ~Omu_Program ()
 destructor
 
virtual void update (int kk, const adoublev &x, const adoublev &u, adoublev &f, adouble &f0, adoublev &c)
 High-level update for the optimization criterion, constraints, and discrete state equations.
 
virtual void consistic (int kk, double t, const adoublev &x, const adoublev &u, adoublev &xt)
 High-level consistic (consistent initial conditions) routine for the initialization of continuous-time states from optimization variables x and u. More...
 

Protected Member Functions

void write_active_mx_args (VECP p)
 write active parameters that are packed in p to _mx_args
 
Implementation of predefined methods.
See Also
Omu_Program
void setup_model ()
 load S-function
 
void setup_stages (IVECP ks, VECP ts)
 Setup stages and time sampling. More...
 
void setup (int k, Omu_VariableVec &x, Omu_VariableVec &u, Omu_VariableVec &c)
 Allocate states x, control parameters u, and constraints c for stage k. More...
 
void setup_struct (int k, const Omu_VariableVec &x, const Omu_VariableVec &u, Omu_DependentVec &xt, Omu_DependentVec &F, Omu_DependentVec &f, Omu_Dependent &f0, Omu_DependentVec &c)
 
void init_simulation (int k, Omu_VariableVec &x, Omu_VariableVec &u)
 Initialize problem variables using simulation. More...
 
void update (int kk, const Omu_StateVec &x, const Omu_Vec &u, const Omu_StateVec &xf, Omu_DependentVec &f, Omu_Dependent &f0, Omu_DependentVec &c)
 
void consistic (int kk, double t, const Omu_StateVec &x, const Omu_Vec &u, Omu_DependentVec &xt)
 
void continuous (int kk, double t, const Omu_StateVec &x, const Omu_Vec &u, const Omu_StateVec &dx, Omu_DependentVec &F)
 
- Protected Member Functions inherited from Prg_SFunction
void read_mx_args (VECP p)
 read _mx_args into vector p
 
void write_mx_args (VECP p)
 write vector p to _mx_args
 
bool setContinuousTask (bool val)
 enable continuous sample time; return true if a continuous sample time exists and has been enabled
 
bool setSampleHit (bool val)
 enable hit for all discrete sample times; return true if a discrete sample time exists and has been enabled
 

Protected Attributes

Omu_VariableVec _mdl_p
 model parameters (note: default min is 0)
 
Omu_VariableVec _mdl_x0
 initial states
 
Omu_VariableVec _mdl_x
 state bounds
 
IVECP _mdl_p_active
 indicate estimated parameters
 
VECP _mdl_p_confidence
 confidence intervals for est parameters
 
IVECP _mdl_x0_active
 indicate estimated states
 
VECP _mdl_x0_confidence
 confidence intervals for est x0
 
VECP _mdl_der_x0_min
 minimum for time derivative of x0
 
VECP _mdl_der_x0_max
 maximum for time derivative of x0
 
IVECP _mdl_u_order
 interpolation order (default: 1 (linear))
 
IVECP _mdl_y_active
 indicate measured outputs
 
VECP _mdl_p_nominal
 nominal parameter values (for scaling)
 
VECP _mdl_x_nominal
 nominal state values (for scaling)
 
VECP _mdl_y_nominal
 nominal output values (for scaling)
 
int _nx
 number of states for optimizer
 
int _np
 number of estimated parameters
 
int _nx0
 number of estimated initial states
 
int _ny
 number of reference outputs for estimation
 
int _multistage
 treat as multistage problem
 
int _nex
 number of experiments used for estimation
 
MATP _mdl_x0s
 initial states for each experiment
 
IVECP _exs
 index identifying experiment in estimation data
 
MATP _mdl_us
 given model inputs
 
MATP _mdl_xs
 calculated model states
 
MATP _mdl_ys
 calculated model outputs
 
MATP _ys_ref
 reference values for active outputs
 
double _ssr
 sum of squared output residuals
 
MATP _M2
 measurement matrix M=dy/d(p,x0)
 
MATP _P2
 precision matrix P=(M^TM)^(-1)
 
MATP _COV
 covariance matrix COV=
 
MATP _dydx
 help variable dy/dx
 
MATP _dxdpx0
 help variable dx/d(p,x0)
 
MATP _dydpx0
 help variable dy/d(p,x0)
 
MATP _dxfdx
 help variable dxf/dx
 
MATP _dxfdpx0
 help variable dxf/d(p,x0)
 
- Protected Attributes inherited from Prg_SFunction
char * _mdl_name
 S-function name.
 
char * _mdl_path
 full S-function path
 
char * _mdl_args
 S-function parameters.
 
SimStruct * _SS
 pointer to SimStruct
 
mxArray ** _mx_args
 S-function parameters after parsing.
 
int _mdl_nargs
 number of S-function arguments
 
double _t0_setup_model
 time used for initialization of model
 
int _mdl_np
 number of model parameters
 
int _mdl_nd
 number of discrete-time states
 
int _mdl_nx
 number of model states (incl. discrete)
 
int _mdl_nu
 number of model inputs
 
int _mdl_ny
 number of model outputs
 
VECP _mdl_p
 parameters
 
VECP _mdl_x0
 initial states
 
bool _mdl_needs_setup
 indicate that setup_model needs to be called as _mdl_name, _mdl_path, or _mdl_args changed
 

Detailed Description

Estimation of parameters and initial states for a model given as MEX S-function.

The estimation problem is formulated at the discrete time points \(t^{0,l}<t^{1,l}<\ldots<t^{K_l}\) with \(l=1,\ldots,N_{ex}\) a number of experiments. The data of all experiments is concatenated into combined vectors of time points, model inputs, and reference outputs, i.e. \(K_l+1=k_{0,l+1}\). In order to distinguish multiple experiments, it is assumed that \(t^{K_l}>t^{0,l+1}\); for instance each experiment could start with \(t^{0,l}=0\). Parameter values are constrained to be the same for all experiments, whereas initial states are individual for each experiment. Note that this is not a restriction as generally states can be initialized with parameters and as parameters can be modeled as constant states.

In the following all vector operations are defined element wise. The treated estimation problem reads

\[ \begin{array}{l} \displaystyle{} J\ =\ \sum_{l=1}^{N_{ex}} \sum_{k_l=k_{l,0}}^{K_l} \sum_{i=1}^{dim(I)} \left\{ \left[\frac{ys^{k_l}(I)-ys^{k_l}_{ref}}{y_{nominal}(I)}\right]^2 \right\}_i \quad\to\quad \min, \quad I = \mbox{find}(y_{active}), \end{array} \]

subject to the model given with the S-function methods mdlDerivatives \(f\), mdlOutputs \(g\) and mdlUpdate \(h\)

\[ \begin{array}{l} \displaystyle x(t) = \left[\begin{array}{ll} x_d^{kk}, & t\in[t^{kk},t^{kk+1}),\ kk=0,\ldots,KK \\ x_c(t) \end{array}\right], \\[3ex] \displaystyle x_d^{kk} = \frac{h[x_{nominal}\,x(t^-),\ u_{nominal}\,u(t^-)]} {x_{nominal_d}},\quad t=t^{kk},\ kk=1,\ldots,KK,\\[3ex] \displaystyle \frac{dx_c(t)}{dt} = \frac{f[x_{nominal}\,x(t),\ u_{nominal}\,u(t)]} {x_{nominal_c}}, \\[3ex] \displaystyle y(t) = \frac{g[p,\ x_{nominal}\,x(t),\ u(t)]} {y_{nominal}} \end{array} \]

with piecewise constant or linear interpolation of the inputs

\[ \begin{array}{ll} u_i(t)\ = & \left\{\begin{array}{ll} us_i^{k_l}, & i \in \mbox{find}(u_{order} = 0) \\[1ex] \displaystyle \frac{t^{k_l+1}-t}{t^{k_l+1}-t^{k_l}}\ us^{k_l} + \frac{t-t^{k_l}}{t^{k_l+1}-t^{k_l}}\ us^{k_l+1}, & \mbox{else} \end{array}\right. \\[5ex] & \quad t\in[t^{k_l},t^{k_l+1}), \quad k_l=k_{l,0},\ldots,K_l-1, \quad l=1,\ldots,N_{ex}, \end{array} \]

and subject to the constraints

\[ \begin{array}{rcccll} \displaystyle \left\{ \frac{p_{min}}{p_{nominal}} \right. &\le& \displaystyle \frac{p}{p_{nominal}} &\le& \left. \displaystyle \frac{p_{max}}{p_{nominal}} \right\}_i, \quad & i \in \mbox{find}(p_{active}), \\[3ex] \displaystyle \left\{ \frac{x^0_{min}}{x_{nominal}} \right. &\le& x(t^{0,l}) &\le& \displaystyle \left. \frac{x^0_{max}}{x_{nominal}} \right\}_i, \quad & i \in \mbox{find}(x^0_{active}), \quad l=1,\ldots,N_{ex}, \\[3ex] \displaystyle \left\{ \frac{der\_x^0_{min}}{x_{nominal}} \right. &\le& \dot{x}(t^{0,l}) &\le& \displaystyle \left. \frac{der\_x^0_{max}}{x_{nominal}} \right\}_i, \quad & i \in \mbox{find}(x^0_{active}), \quad l=1,\ldots,N_{ex}, \\[3ex] && \{ x(t^{0,l}) &=& \displaystyle \frac{x0s^l}{x_{nominal}} \}_i, \quad & i \notin \mbox{find}(x^0_{active}), \quad l=1,\ldots,N_{ex}, \\[3ex] \displaystyle \frac{x_{min}}{x_{nominal}} &\le& x(t^{k_l}) &\le& \displaystyle \frac{x_{max}}{x_{nominal}}, \quad & k_l=k_{l,0},\ldots,K_l, \quad l=1,\ldots,N_{ex}. \end{array} \]

The problem is treated as multistage problem with \(K_{N_{ex}}\) stages and one sample period per stage per default (multistage=1 or multistage=2). Discrete-time state variables with unknown initial value are introduced for the estimated parameters p, in order to preserve a sparse structure. Additional \(K_{N_{ex}}\) junction conditions (equality constraints) are introduced for the estimated parameters and \(K_{N_{ex}}-N_{ex}+1\) junction conditions are introduced for the state variables x. Alternatively the problem can be treated without stages hiding model states from the optimizer (multistage=0).

The states of all stages are either initialized with the initial states \(x0s^l\)

\[ \begin{array}{rcll} x_{initial}(t^{k_l}) &=& \displaystyle \frac{x0s^l}{x_{nominal}}, & k_l=k_{l,0},\ldots,K_l, \quad l=1,\ldots,N_{ex} \end{array} \]

or with individually given initial guesses \(xs\)

\[ \begin{array}{rcll} x_{initial}(t^{k_l}) &=& \displaystyle \frac{xs^{k_l}}{x_{nominal}}, & k_l=k_{l,0},\ldots,K_l, \quad l=1,\ldots,N_{ex}. \end{array} \]

All but the initial states of the experiments may be initialized with the results of an initial-value simulation for given initial states and inputs (multistage=0 or multistage=1). With multistage=2, individual initial states are used for each stage, resulting in the multiple shooting method. This might be useful if no sensible initial guesses can be given for unknown parameters, so that a simulation fails.

states and inputs. If the problem is treated as multistage problem, then not performing the simulation results in the multiple shooting method. This might be useful if no sensible initial guesses can be given for unknown parameters, so that a simulation fails.

Model inputs, states and outputs can be accessed through

\[ \begin{array}{l} us^{k_l} = u_{nominal}\,u(t^{k_l}), \\[1ex] xs^{k_l} = x_{nominal}\,x(t^{k_l}), \\[1ex] ys^{k_l} = y_{nominal}\,y(t^{k_l}), \quad k_l=k_{l,0},\ldots,K_l, \quad l=1,\ldots,N_{ex}. \end{array} \]

In addition to the estimated parameters and initial states, the measurement matrix M is calculated in each optimization iteration. It is defined as

\[ M = \left[\begin{array}{cc} M_p^0, & M_{x^0}^0 \\[2ex] M_p^1, & M_{x^0}^1 \\[2ex] \vdots, & \vdots \\[2ex] M_p^{K_{N_{ex}}}, & M_{x^0}^{K_{N_{ex}}} \end{array}\right] \]

with the sub-matrices

\[ \begin{array}{r} \displaystyle M_p^{k,l} = \frac{d\,\displaystyle\frac{ys^{k,l}} {y_{nominal}}(I_y)} {d\,\displaystyle\frac{p}{p_{nominal}}(I_p)}, \quad M_{x^0}^{k,l} = \frac{d\,\displaystyle\frac{ys^{k,l}}{y_{nominal}}(I_y)} {d\,\displaystyle\frac{x0s^l}{x_{nominal}}(I_{x^0})}, \quad k_l=k_{l,0},\ldots,K_l, \quad l=1,\ldots,N_{ex}, \\[7ex] I_y = \mbox{find}(y_{active}),\ I_p = \mbox{find}(p_{active}), \ I_{x^0} = \mbox{find}(x^0_{active}). \end{array} \]

Note that the sub-matrices for estimated initial states of all experiments are stored in compressed form in one column, even though individual initial states are being estimated for each experiment.

Some simple quality measures are directly calculated in order to support a first interpretation of estimation results. These are the precision matrix

\[ P = (M^TM)^{-1}, \]

and the covariance matrix

\[ COV = s_R^2 P, \qquad s_R^2=\frac{J}{n}, \qquad n=\mbox{dim}(I_y)(K+1) - \mbox{dim}(I_p) - N_{ex}\mbox{dim}(I_{x^0}) - 1, \]

assuming that the residual variance \(s_R^2\) is equal to the measurement variance. Last but not least confidence intervals for estimated parameters and initial states \(px^0\) are obtained applying the t-Test:

\[ px^0_{confidence}\ =\ |px^0_{estimated} - px^0_{actual}|\ = \ px_{nomainal} t_{\alpha/2,n}\sqrt{\mbox{diag(COV)}}, \qquad \alpha=0.05. \]

Member Function Documentation

void Prg_SFunctionEst::init_simulation ( int  k,
Omu_VariableVec x,
Omu_VariableVec u 
)
protectedvirtual

Initialize problem variables using simulation.

A problem specification may set state variables x and/or control parameters u prior to the evaluation of stage k. The default version causes an initial value simulation based on initial values given in setup.

Reimplemented from Omu_Program.

const VECP Prg_SFunctionEst::mdl_x_nominal ( ) const
inline

nominal state values (for scaling)

interpolation order (0 (constant) or 1 (linear), default: 1)

References _mdl_x_nominal.

void Prg_SFunctionEst::setup ( int  k,
Omu_VariableVec x,
Omu_VariableVec u,
Omu_VariableVec c 
)
protectedvirtual

Allocate states x, control parameters u, and constraints c for stage k.

Additionally setup bounds and initial values.

Implements Omu_Program.

void Prg_SFunctionEst::setup_stages ( IVECP  ks,
VECP  ts 
)
protectedvirtual

Setup stages and time sampling.

The default implementation sets up an optimization problem without stages.

Reimplemented from Omu_Program.


The documentation for this class was generated from the following file: